Методическая документация. BMC Framework 5.0. 12 августа 2014

Методическая документация
BMC Framework 5.0
(Версия от 2014.08.12)

СОДЕРЖАНИЕ

1	Структура проекта	3
1.1	Настройка nginx	4
2	Отложенная загрузка скриптов	5
2.1	Загрузка скриптов в диалоговых окнах	6
3	Принципы работы протокола	7
3.1	Файл conf.php	7
3.2	Класс IOSession	7
3.3	Класс IOCore	7
3.4	Класс IOHash	7
3.5	Мультиязычность	7
4	Классы	8
4.1	Создание простого класса	8
4.2	Типы данных	9
4.3	Массивы	12
4.3.1	Параметр noKeys	12
4.3.2	Подмассивы	12
4.4	Свойства (type property)	14
4.5	Функции класса	15
4.5.1	Поиск данных в базе	15
Функция dbsearch2	16
Функция dbsearch3	16
4.5.2	Функция dbrehash	16
4.5.3	Функция create	16
4.5.4	Функция update	16
5	Модели	18
5.1	Фунции модели	23
5.2	функция rcp_rules	23
5.3	функция getStruct	23
5.4	функция getParams	24
5.5	функция event	24
5.6	функция showAdd	24
5.7	Написание своего action	24
5.8	Яваскрипт функция ioCallEntity	26
5.9	Яваскрипт функция onEvent	27
5.9.1	Вызов onEvent	27
6	Работа с niceTable	29
7	Работа с классом IOForm2	29
8	Контроллеры	30
9	Шаблоны	31
10	Функции	32
10.1	Функции протокола	32
10.2	Функции twig	32
10.3	Функции javascript	32
10.3.1	ioCallEntity	32
10.3.2	QRAnalyze	32
10.4	Класс jsApplication	32
10.5	Функции для работы со временем и временными зонами	32
11	Спецификация протокола	33
12	Интеграция с другими проектами	34
13	Архитектура проекта	35
13.1.1	Описание схемы:	35
13.1.2	Работы схемы	37
13.1.3	Ограничения	37
13.1.4	Процесс обновления программного обеспечения	37
14	Процесс разработки	39
14.1	Процесс обновления на новую версию	39
15	Система контроля версий Mercurial	40
16	Правила написания кода	41

Для подсветки используем http://tohtml.com/

5

[bookmark: _Toc393710684]Структура проекта

1) /index.php. Это главный файл проекта. Он является вратами. Через него проходят все запросы, которые отправляются на сайт.
2) /conf.php. Конфигурационный файл, который является уникальным для каждого сервера. Содержит основные настройки проекта, пароли от баз данных…
3) /cron.php. Файл, обслуживающий автоматически выполняемые скрипты, которые выполняются через определенные промежутки времени. Данный файл запускается каждую минуту и в зависимости от настроек таблицы cron запускает скрипт. Также возможен ручной запуск скрипта: через командную строку и через веб браузер.
Для запуска через командную строку в консоли наберите:
$ cron.php <id скрипта>
Для запуска через браузер наберите:
http://<название проекта>/cron.php?id=<id скрипта>
<id скрипта> берется из таблицы крон

4) /app/. Папка, которая содержит всю логику программы
5) /app/i.php. Файл, содержащий настройки проекта, которые должны быть выполнены обязательно вне зависимости от запроса. Например, подключение к базе данных или объявление собственных функций проекта.
6) /app/controller/. Папка, содержащие контроллеры
7) /app/dictionary/. Папка, содержащая тексты переводов на другие языки.
8) /app/view/. Папка, содержащие html шаблоны на основе шаблонизатора Twig.
9) /app/view/layout/. Папка, содержащие шаблоны, которые отвечают за оформление всей страницы: хеадер, футер, меню …
10) /app/view/cabinet/<module>/. Папка, содержащие страницы сайта модулей. Обычно сюда ложатся файлы модулей личного кабинета.
Примеры:
· /app/view/cabinet/crm/ - здесь лежат страницы кабинета CRM мобильного приложения;
· /app/view/cabinet/goods/ - здесь лежат страницы кабинета trade.bmcsales.kz для работы с товарами;
11) /app/view/pages/<module>/. Папка, содержащие внешние страницы сайта.
Примеры:
· /app/view/pages/index.html – главная страница онлайн карт;
· /app/view/pages/layout.html – шаблон онлайн карт;
·
· /app/view/cabinet/goods/ - здесь лежат страницы кабинета trade.bmcsales.kz для работы с товарами;

12) /img/. Папка для картинок
13) /img/common/. Общие картинки для всех проектов. Входит в состав протокола. Является символичекой ссылкой на /app/io/examples/modules/images/common/.
14) /img/panel/. Верхняя панель. Входит в состав протокола. Является символичекой ссылкой на /app/io/examples/modules/images/panel/.
15) /files/modules/. Символическая ссылка на /app/io/examples/modules/
16) /js/. Папка со скриптами проекта.
17) /css/. Папка с css проекта.
18) /cache/twig/. Папка с кэшем tiwg.

[bookmark: _Toc393710685]Настройка nginx

Задачи:
· запретить доступ к .hg;
· предоставить прокси к xmpp через /xmppproxy;
· предоставить доступ к программе кроссерверного обмена через /entity;
· раздача статического контента из папок ./js, ./files, ./css, ./img;
· запрет выполнения php скриптов в папках:
· ./template;
· ./files;
· ./app;
· ./js;
· ./css;
· ./img;
· запрет выполнения cgi;
· переадресация всех запросов на index.php, реализовация rewrite_engine;
· разрешить доступ к cron.php;
· запретить выполнение php скриптов, только index.php и cron.php;

Конфигурационный файл хоста nginx:

Если нужно запретить выполнение php файлов в паке то писать так
 location ~ /mm/ {
 root /srv/httpd/default;
 autoindex on;
 disable_symlinks off;
 auth_basic "Restricted";
 auth_basic_user_file /srv/httpd/default/mm/.htpasswd;
 types { }
 default_type text/plain;
 break;
 }
 location ~ \.php$ {
 root /srv/httpd/default;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME /srv/httpd/default$fastcgi_script_name;
 include fastcgi_params;
 }

Кофнигурационный файл Apache
<VirtualHost *:8008>
 DocumentRoot /srv/httpd/bmcsales.kz/alatau/www
 ErrorLog /var/log/httpd/alatau.err.log
 DirectoryIndex index.php
 ServerName alatau.bmcsales.kz
 ServerAlias *.alatau.bmcsales.kz *.alatay.bmcsales.kz
 <Directory /srv/httpd/bmcsales.kz/alatau/www>
 Options None +FollowSymlinks -ExecCGI
 AllowOverride All
 </Directory>
 php_admin_value open_basedir "/srv/httpd/bmcsales.kz/alatau/upload:/tmp/:/srv/httpd/bmcsales.kz/alatau"
 php_admin_value upload_tmp_dir "/srv/httpd/bmcsales.kz/alatau/upload"
 php_admin_value session.save_path "/srv/httpd/bmcsales.kz/alatau/sessions"
 <DirectoryMatch /srv/httpd/alatau/www/template/(.+/)files>
 RewriteEngine Off
 </DirectoryMatch>
 <DirectoryMatch /srv/httpd/alatau/www/template>
 AllowOverride None
 AddHandler None .php
 AddHandler None .php3
 AddHandler None .php4
 AddHandler None .php5
 AddHandler None .phtml
 php_value engine off
 </DirectoryMatch>
 <DirectoryMatch /srv/httpd/alatau/www/files>
 AllowOverride None
 AddHandler None .php
 AddHandler None .php3
 AddHandler None .php4
 AddHandler None .php5
 AddHandler None .phtml
 RewriteEngine Off
 php_value engine off
 </DirectoryMatch>
 <DirectoryMatch /srv/httpd/alatau/www/custom>
 AllowOverride None
 AddHandler None .php
 AddHandler None .php3
 AddHandler None .php4
 AddHandler None .php5
 AddHandler None .phtml
 RewriteEngine Off
 php_value engine off
 </DirectoryMatch>
</VirtualHost>

[bookmark: _Toc393710686]Отложенная загрузка скриптов

Отложенная загрузка скриптов происходит через библиотеку yepnope и служит для ускорения отображения html страницы. Теперь для того чтобы страница отобразилась не требуется погрузки всех скриптов. Необходимые скрипты подгружаются до отображения, а все остальные после.
Ниже приведен код загрузки кабинета. Сначала погружаются необходимые css, затем js: bootstrap css, yepnope, io.base.js, jquery.
Tinymce подгружается только из-за того, что он не работает через yepnope.
Далее подгрузка осуществляется через плагин yepnope следующих модулей: jquery-ui, bootstrap js, liveready, io.js, jquery.migrate. В принципе список может быть длинным.
$.holdReady(true) говорит jquery, чтобы он задержал обработчик $(document).ready. Он сработает после того как выполнится команда $.holdReady(false). Все команды, которые используют скрипты bootstrap, jquery-ui должны обрабатыватся в $(document).ready, иначе произойдет ошибка javascript, т.к. скрипт еще не подгрузился.
Важной особенностью является команда ioGetModuleUrls({module:'jquery-ui', push: 1}). Она возвращает ссылки js и css, которые необходимо подгрузить для работы модуля jquey-ui. Причем после срабатывания этой функции, данные заносятся в хеш, и повторно не возвращаются. Это нужно для того, чтобы yepnope не грузил дважды один и тот же скрипт.

	<script type='text/javascript'>
		$.holdReady(true);
		var load = new Array();
		//load = load.concat(ioGetModuleUrls({module:'jquery-ui', push: 1}));
		//load = load.concat(ioGetModuleUrls({module:'jquery-ui-flick', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'bootstrap', version: 3, push: 1}));
		load = load.concat(ioGetModuleUrls({module:'liveready', push: 1}));
		load = load.concat(['/files/modules/io.js?_=15']);
		load = load.concat(['/files/modules/jquery/jquery-migrate-1.2.1.min.js']);
		load = load.concat(ioGetModuleUrls({module:'jquery-blockUI', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'the-modal', push: 1}));
		
		yepnope({
			load: load,
			complete: function () {
				jsApplication.busyEnabled = true;
				jsApplication.openAjaxEnabled = true;
				ioInit({
					'user.id':'{{user.id}}',
					'user.login':'{{user.login}}',
					'user.account':'{{user.account}}',
					'currentlang':'def',
				});
				$.blockUI.defaults.theme=true;
				$.holdReady(false);
				
				if (jsApplication.__busy <= 0){
					$('#loadBusy').css('display','none');
					$('body').removeClass('scroll-lock');
				}
				//jsApplication.busy(true);
			}
		});
		$(document).ready(function(){
		});
	</script>

[bookmark: _Toc393710687]Загрузка скриптов в диалоговых окнах

Очень часто встречается задача, что диалоговое окно использует свой скрипт, который редко встречается в проекте, например jquerytree. Его не желательно каждый раз грузить при генерации страницы. В этом случае так же используется yepnope.
В ниже приведенном коде подгружаются модули noty, noty-topRight, jquey-contextmenu, jquery-dynatree, chosen. Если модули ранее не загружались, то срабатывает функция onChoosenSelect(), которая инициирует работу с chosen (список функций можно посмотреть в io.js), а также срабатывает функция dynatreeDo().dynatreeDo – это пользовательская функция, которая должна инициировать работу с деревом. Обычно функции инициирующие работу пишутся в document.ready, но т.к. мы имеем дело диалоговым окном document.ready не сработает. Если диалоговое окно подгружалось несколько раз, то естественно load будет пустой и скрипты второй раз грузится не будут, поэтому просто выполнится функция dynatreeDo и инициирует работу с деревом.
Причина, по которой написан setTimeout следующая: обычно подгрузка пишеться в самом верху, а функция описана ниже.

<script type='text/javascript'>
	jsApplication.pageLoad(function(){
		{% set variable = 'var_'~random(999999)%}
		var {{variable}}=0;
		var param='';
		var load = new Array();
		load = load.concat(ioGetModuleUrls({module:'nicetable', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'bootstrap-editable', version:'1.5.1-3', push: 1}));
		if (jsApplication.busy && load.length > 0) {jsApplication.busy(true); {{variable}}=1;}
		if (load.length > 0){
			yepnope({
				load: load,
				complete: function () {
					if (jsApplication.busy && {{variable}}) jsApplication.busy(false);
					onBootstrapEditable();
					setTimeout('{{niceTableID}}()',10);
				},
			});
		}
		else{
			if (jsApplication.busy && {{variable}}) jsApplication.busy(false);
			setTimeout('{{niceTableID}}()',10);
		}
	});
</script>

[bookmark: _Toc393710688]Принципы работы протокола

[bookmark: _Toc393710689]Файл conf.php

a. ioGetMongoConnection(),ioSetMongoConnection()

[bookmark: _Toc393710690]Класс IOSession

[bookmark: _Toc393710691]Класс IOCore

b. Функция IOCore::Instance()
c. Функция IOCore::call(), IOCore::callAction()

[bookmark: _Toc393710692]Класс IOHash

d. Функции IOHash->get(), IOHash->set, IOHash->delete()

[bookmark: _Toc393710693]Мультиязычность

a. работа с язаками. Dictionary, IOCore::loadDictionary(), IOCore:: getTranslate()

[bookmark: _Toc393710694]Классы

[bookmark: _Toc393710695]Создание простого класса

Каждый класс в системе обладает уникальным именем. Из любой части кода, без разницы находится ли код в проекте, или в другом, существует возможность обратится к методам этого класса. Для этого необходимо правильно задать имя.
Имя класса состоит из следующих частей: <project name>.class[.<path>].<className>
<project name> - это имя проекта, зарегистрированная в общей базе данных <path> - это путь к классу в этом проекте. путь может не существовать. Это означает, что класс лежит в папке /app/class <classNamae>. Кроме описания класса в этом файле ничего не должно быть. Закрывать ?> не обязательно.
Примеры имен:
com.class.user - класс пользователей, которые находится в проекте Common, который отвечает за авторизацию, регистрацию пользователей
com.class.crm.client - класс в CRM, который позволяет зарегистрировать клиента
app.class.test - Тестовый класс, который находится в том же проекте, где осуществляется к нему обращение
Ниже приведен пример класса Test. В папке /app/class необходимо создать файл test.php, название класса должно быть таким же как и название файла без расширения php и с большой буквы.
Обязательные функии при написания класса:
· rcp_rules возращает разрешенные функции, которые можно запускать удаленно с других проектов;
· tablename возращает имя базы данных, куда будут сохранятся данные;
· struct возращает структуру базы данных;

<?

class Test extends IOMongoObject{
	public static function rcp_rules(){
		$arr=parent::rcp_rules();
		//$arr['object']['getPage']=1;
		return $arr;
	}
	
	public function tablename(){
		return MONGO_DATABASE.'.testclass';
	}
	
	public function struct(){
		return array(
			'fields'=>array(
				'pkid'=>array(
					'type'=>'sql',
					'func'=>'pkid',
					'datatype'=>'long',
),
				'isDeleted'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
),
				'gmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
),
				'gmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
),
				'ugmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'long',
),
				'ugmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'long',
),	
),
			'primary'=>array(
				0=>'pkid',
),
);
	}
}

Необходимые поля, когда всегда должны быть:
· pkid тип long
· isDeleted тип boolean
· gmtimeAdd тип nohtml, хранит значение в формате rfc822
· gmtimeChange тип nohtml, хранит значение в формате rfc822
· ugmtimeAdd тип long, хранит значения в unix timestamp
· ugmtimeChange тип long, хранит значения в unix timestamp

Каждое поле задается следующим описанием характеристик:
· type - тип поля. Различают sql и property
· default - значение по умолчанию
· readonly - только чтение, запрещено редактирование и создание
· nocreate - запрещено инициализация переменной при ее создании
· noedit - запрещено редактирование переменной, но при создании ее можно проиницировать
· datatype - тип данных поля
· struct - структура поля (используется для массивов)

[bookmark: _Toc393710696]Типы данных

1. Целочисленные
a. integer – 32 битное знаковое целое
b. long – 64 битное знаковое целое
2. Вещественные
a. long – действительное число
3. Логические
a. boolean логический тип
4. Строки
a. string – строка текста
b. html – строка, обработанная командой purify (безопасная для хранения html данные)
c. nohtml – строка из которой вырезаны все html теги
d. htmlescape – строка в которой экранированы все html теги
5. Дата
a. datetime – строка, в которой сохранены дата, время и временная зона
6. Массивы
a. array – структурированный массив
b. collection – не структурированный массив
7. Деньги
a. money - деньги

Ниже приведена тестовая структура основных типов:
<?php
public function struct(){
		return array(
			'fields'=>array(
				'pkid'=>array(
					'type'=>'sql',
					'func'=>'pkid',
					'datatype'=>'long',
),
				'typeInt'=>array(
					'type'=>'sql',
					'datatype'=>'int',
),
				'typeLong'=>array(
					'type'=>'sql',
					'datatype'=>'long',
),
				'typeDouble'=>array(
					'type'=>'sql',
					'datatype'=>'double',
),
				'typeBool'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
),
				'typeString'=>array(
					'type'=>'sql',
					'datatype'=>'string',
),
				'typeDate'=>array(
					'type'=>'sql',
					'datatype'=>'date',
),
				'typeArray'=>array(
					'type'=>'sql',
					'datatype'=>'array',
					'struct'=>'long'
),
				'typeMoney'=>array(
					'type'=>'sql',
					'datatype'=>'money',
),
				'isDeleted'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
),
				'gmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
),
				'gmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
),
				'ugmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'long',
),
				'ugmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'long',
),
),
			'primary'=>array(
				0=>'pkid',
),
);
	}
?>

Пример создания класса приведен ниже:
<?php
$c=IOCore::Instance('app.class.test');

$c->typeInt=10; // NumberInt(10)
$c->typeLong=10; // NumberLong(10)
$c->typeDouble=10; // 10
$c->typeBool=true; // true
$c->typeString=10; // string("10")

$c->typeDate=time(); // "10"
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','Asia/Almaty',date_default_timezone_get()); // Сохранить время в поясе 'Asia/Almaty' //ISODate("2014-02-02T06:00:00.0Z")
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','CET',date_default_timezone_get()); // Сохранить текущее время по центральному европейскому времени //ISODate("2014-02-02T06:00:00.0Z"
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','UTC',date_default_timezone_get()); // Сохранить текущее время по гринвичу //ISODate("2014-02-02T06:00:00.0Z")

$c->typeArray=array(1,2,3,4,5); // Массив из чисел
/*
В базе будет
"typeArray": {
	"0": NumberLong(1),
	"1": NumberLong(2),
	"2": NumberLong(3),
	"3": NumberLong(4),
	"4": NumberLong(5)
}
*/

$c->typeMoney=array('value'=>10,'currency'=>'KZT'); // Денежный тип
/*	
В базе будет
"typeMoney": {
	"value": "10",
	"currency": "KZT"
}
*/

$r=$c->create();

v_dump($r);
v_dump($c->error_str);
v_dump($c->error_code);
v_dump($c->__mongo_data);
?>

Код ошибки будет сохранен в переменной $c->error_code, данные, которые были отправлены в базу MongoDB, будут сохранены в переменной $c->__mongo_data.

[bookmark: _Toc393710697]Массивы

В ниже приведенном коде описывается массив, элементами которого будут целочисленные 64 битные знаковые числа. Если массив не задан, то по умолчанию сохранится null.

'typeArray'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>'long',
	'default'=>null
),

[bookmark: _Toc393710698]Параметр noKeys

Если указать параметр noKeys, то ключи массива сохранятся не будут.
'typeArray'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>'long',
	'default'=>null
),

Вместо значений a,b,c,d в базе сохранятся значения 0,1,2,3.
<?php
$c->typeArray=array('a'=>1,'b'=>2,'c'=>3,'d'=>4); // Массив из чисел
/*
В базе будет
"typeArray": {
	"0": NumberLong(1),
	"1": NumberLong(2),
	"2": NumberLong(3),
	"3": NumberLong(4),
}
*/
?>

[bookmark: _Toc393710699]Подмассивы

Фраемворк может хранить подмассивы как элементы массива. Это задается с помощью параметра struct при описании массива.

Пример, структура данных выглядит следующим образом:
'typeArray2'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>array(
		'fieldLong'=>array(
			'datatype'=>'long',
			'default'=>0,
),
		'fieldArray'=>array(
			'datatype'=>'array',
			'struct'=>'long',
			'noKeys'=>1,
			'default'=>array(1,2,3),
),
		'fieldMoney'=>array(
			'datatype'=>'money',
			'default'=>array('value'=>0,'currency'=>'KZT'),
),
		'fieldString'=>array(
			'datatype'=>'nohtml',
			'default'=>'строка по умолчанию',
),
),
	'noKeys'=>1,
),

Если сохранить данные в массив:
$c->typeArray2=array(
	array(
		'fieldString'=>'Это строка
!',
		'fieldMoney'=>array('value'=>10,'currency'=>'KZT'),
		'fieldLong'=>10,
		'fieldArray'=>array(1,2,3,4,5),
),
	'second'=>array(
		'fieldArray'=>array('a'=>1),
),
	array(),
);

То в Mongo сохранятся следующие данные:
/*
"typeArray2": {
	"0": {
		"fieldLong": NumberLong(10),
		"fieldArray": {
			"0": NumberLong(1),
			"1": NumberLong(2),
			"2": NumberLong(3),
			"3": NumberLong(4),
			"4": NumberLong(5)
		},
		"fieldMoney": {
			"value": NumberInt(10),
			"currency": "KZT"
		},
		"fieldString": "Это строка !"
	},
	"1": {
		"fieldLong": NumberLong(0),
		"fieldArray": {
			"0": NumberLong(1)
		},
		"fieldMoney": {
			"value": NumberInt(0),
			"currency": "KZT"
		},
		"fieldString": "строка по умолчанию"
	},
	"2": {
		"fieldLong": NumberLong(0),
		"fieldArray": {
			"0": NumberLong(1),
			"1": NumberLong(2),
			"2": NumberLong(3)
		},
		"fieldMoney": {
			"value": NumberInt(0),
			"currency": "KZT"
		},
		"fieldString": "строка по умолчанию"
	}
},
*/

[bookmark: _Toc393710700]Свойства (type property)

Свойства – это специальные переменные, которые реально значения не хранят, эти значения получается на основе данных класса.

Объявим в классе новое поле:

'typeProperty1'=>array(
	'type'=>'property',
	'datatype'=>'long',
	'func'=>'property1',
),
'typeProperty2'=>array(
	'type'=>'property',
	'datatype'=>'long',
	'func'=>'property2',
),

И функцию в классе:

public function property1($method, $name, $value){
	v_dump($method . " " . $name . " " .$value);
	if ($method == 'set'){
		if (!isset($this->__data[$name]))$this->__data[$name]=$value;
		else $this->__data[$name]+=$value;
	}
	else if ($method == 'get'){
		// Ничего не делаем, пусть значение будет то же
	}
}

public function property2($method, $name, $value){
	v_dump($method . " " . $name . " " .$value);
	if ($method == 'set'){
	}
	else if ($method == 'get'){
		// Ничего не делаем, пусть значение будет то же
		$this->__data[$name] = $this->typeProperty1 * 2;
	}
}

Если выполнить следующие команды:

$c->typeProperty1=1; // в typeProperty1 будет 1
$c->typeProperty1=2; // в typeProperty1 будет 3
$c->typeProperty1=3; // в typeProperty1 будет 4
v_dump($c->typeProperty1); // Выведет 6
v_dump($c->typeProperty2); // Выведет 12

При выполнении этих команд будет постоянно вызывать функция property1 класса. При сохранении значения, старое значение будет увеличиваться на величину нового значение. При получении $c->typeProperty2 вызовется метод property2 и установит новое значение для поля typeProperty2.

То на экране выйдет:

string("set typeProperty1 1")
string("set typeProperty1 2")
string("set typeProperty1 3")
string("get typeProperty1 ")
integer(6)
string("get typeProperty2 ")
string("get typeProperty1 ")
integer(12)

При установке нового значения вызовется функция property1 с параметрами $method=’set’, $name = ‘typeProperty1’. Это означает, что идет установка значения поля typeProperty1, При получении аналогично вызовется функция, только с $method=’get’. Т.к. функция ничего не устанавливает, на экран выведется null.

Объявим в классе поля, но вместо property запишем sql, теперь новые значения будут сохранятся в базе данных. Но метод set в функциях вызываться не будет, только метод get.

'typeProperty1'=>array(
	'type'=>'sql',
	'datatype'=>'long',
	'func'=>'property1',
),
'typeProperty2'=>array(
	'type'=>'sql',
	'datatype'=>'long',
	'func'=>'property2',

Выполним команды:

$c->typeProperty1=1; // в typeProperty1 будет 1
$c->typeProperty1=6; // в typeProperty1 будет 6
v_dump($c->typeProperty1); // Выведет 6
v_dump($c->typeProperty2); // Выведет 12

На экран выведется:

string("get typeProperty1 ")
integer(6)
string("get typeProperty2 ")
string("get typeProperty1 ")
integer(12)

[bookmark: _Toc393710701]Функции класса

[bookmark: _Toc393710702]Поиск данных в базе

Правила построения запроса:

	Запрос
	Аналог mysql

	Array(
‘a’=>2
)
	Select * from table where a = 2

	Array(
‘!=a’=>2
)
	Select * from table where a != 2

	Array(
‘a’=>array(1,2,3,4)
)
	Select * from table where a in (1,2,3,4)

	Array(
‘!=a’=>array(1,2,3,4)
)
	Select * from table where not (a in (1,2,3,4))

	array(
'$or'=>array(
	array('typeInt'=>2,),
	array('typeInt'=>1,),
))
	Select * from table where typeInt = 2 or typeInt = 1

	array(
'$and'=>array(
	array(
		'$or'=>array(
			array('typeInt'=>2,),
			array('typeInt'=>1,),
),
),
	array(
		'$or'=>array(
			array('typeDouble'=>3,),
			array('typeDouble'=>2,),
),
),
),
)
	Select * from table where (typeInt = 2 or typeInt = 1) and (typeDouble = 3 or typeDouble = 2)

	
	

подключение к solr, метод dbsearch(). Синтаксис solr

[bookmark: _Toc393710703]Функция dbsearch2

метод dbsearch2, параметр фильтр. Как делать запросы к базе. Параметр out=>array, out=>object. Как искать в базе по тексту. Синтаксис фильтра.

[bookmark: _Toc393710704]Функция dbsearch3

[bookmark: _Toc393710705]Функция dbrehash

[bookmark: _Toc393710706]Функция create

параметры методов create, update: w, j, gmtimeAdd, gmtimeChange, safe, changeVersion, insert_or_update

[bookmark: _Toc393710707]Функция update

[bookmark: _Toc393710708]Модели

Класс мы создали, теперь необходимо создать модель. Модель - это объект в системе, который отвечает за логику работы приложения. Модель отвечает за проверку прав, выполнение CRUD операций, прорисовку таблиц, форм. К методам модели можно обращаться из других проектов. Модель связывает пользовательский интерфейс и данные, которые находится в базе данных.
Важно! модель на экран ничего не должна выводить он должна либо вызывать функцию render, либо возвращать данные через return
Закрывать тег ?> в файле не обязательно.
Для примера, создадим модель, для класса Test.

Код app.model.test1
<?
	class Test1Model extends IOModel4{
		
		public static function rcp_rules(){
			return array(
				'static'=>array(
					'actionShowNiceList'=>1,
					'actionShowNiceFilter'=>1,
					'actionShowNiceFilterField'=>1,
					'actionNiceData'=>1,
					'actionShowAdd'=>1,
					'actionAdd'=>1,
					'actionShowEdit'=>1,
					'actionEdit'=>1,
					'actionShowDelete'=>1,
					'actionDelete'=>1,
					'actionEditField'=>1,
),
);
		}
	
		public static function getStruct($params){
			global $ioSession;
			$fields=array(
				'pkid'=>array(
					'type'=>'hidden',
					'showAdd'=>false,
					'hidden'=>true,
					'isPrimary'=>true,
),
				'typeInt'=>array(
					'label'=>'Int',
					'type'=>'number',
					'filter'=>true,
),
				'typeLong'=>array(
					'label'=>'Long',
					'type'=>'select',
					'options'=>array(
						0=>'ноль',
						1=>'один',
						2=>'два',
						3=>'три',
						4=>'четыре',
),
					'filter'=>true,
),
				'typeDouble'=>array(
					'label'=>'Double',
					'type'=>'input',
					'filter'=>true,
),
				'typeBool'=>array(
					'label'=>'Bool',
					'type'=>'checkbox',
					'filter'=>true,
),
				'typeString'=>array(
					'label'=>'String',
					'type'=>'input',
					'filter'=>true,
),
				'typeDate'=>array(
					'label'=>'Date',
					'type'=>'date',
					'date_format'=>'d-m-Y',
					'jsDate_format'=>'dd-mm-yyyy',
					'date_output_timezone'=>$ioSession->user->timezone,
					'filter'=>true,
),
);
			return array(
				'fields'=>$fields,
				'primary'=>array('pkid'),
);
		}

		public static function getParams($params){
			$result=array(
				'class'=>'app.class.test',
				'model'=>'app.model.test1',
				'classSearch'=>'app.class.test.dbsearch3',
				'forceDelete'=>0,
				'renderForm'=>'io.view.nicetable.niceForm',
				'renderFilterElem'=>'io.view.nicetable.niceFilterElem',
				'renderFilter'=>'io.view.nicetable.niceFilter',
);
			return $result;
		}
		
		public static function event($event='', $params=array()){
		
			$struct = xarr($params,'struct',array());
			$object = xarr($params,'object',array());
			$form = xarr($params,'form',array());
			$p = xarr($params,'params',array());
		
			if ($event == 'init'){
				return EIO_OK;
			}
			
			else if ($event == 'searchFilter'){
				$params['xfilter']=array(
					'isDeleted'=>false,
);
				$filter=parent::event($event,$params);
				return $filter;
			}
			
			else if ($event == 'getObjectFilter'){
				$params['xfilter']=array(
					'isDeleted'=>false,
);
				$filter=parent::event($event,$params);
				return $filter;
			}
			
			else if ($event == 'search_post'){
				parent::event($event,$params); //Вызываем старый event
			}
			
			return parent::event($event,$params);
		}
		
		public static function doTest($result, $params){
			$p = call_user_func_array (array(get_called_class(), 'params'), array($params));
			$struct = call_user_func_array (array(get_called_class(), 'struct'), array($params));
			
			$result->error_code = EIO_OK;
			
			return $result;
		}
	}
Код app.controller.cabinet
<?

class CabinetController extends IOController {
	public static function layout() {
		return "io.view.cabinet.index";
	}
	
	public static function run_pre($method, $end){
		global $ioPage, $breadcrumbs, $ioSession, $ioData, $ioHash;
		
		if (xpost('norender') == 1) self::setLayout('io.view.cabinet.norender');
		
		IOCore::loadDictionary(IO_PATH . '/app/dictionary/cms.php');
		
		//Блокируем неавторизованных
		if ($ioSession->isGuest()){
			self::render('io.view.denyAuth',array());
			return 0;
		}
		//Список закладок
		$page_url = $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'];
		$bookmarks = array();
		$topBookmarks = array();
		$ioPage->bookmarks = $bookmarks; //Закладки у аккаунта
		$ioPage->topBookmarks = $topBookmarks; //Закладки под строкой меню
		
		$ioPage->addBreadcrumbs($breadcrumbs['projects'], 'projects');
		$ioPage->addBreadcrumbs($breadcrumbs['account'], 'account');
		$ioPage->selectBreadcrumbs('projects', 'eop');
		
		$ioPage->lineMenu=array(
			/*
			array(
				'img'=>'/img/panel/home2.png',
				'title'=>'Личный кабинет',
				'href'=>UrlGetAdd(xarr($ioProjects,'com'), 'account', $ioSession->user->account),
),
			*/
			array(
				'img'=>'/img/panel/eop.png',
				'title'=>'Кабинет',
				'href'=>UrlGetAdd('/cabinet', 'account', $ioSession->user->account),
				'extraClass'=>'jsApplicationOpen',
),
			
);
		
		$site=xarr($ioPage->site,'object');
		
		if ($site === null){
			self::render('app.view.deny',array());
			return 0;
		}		
		
		if (site_permission($site->pkid)){
			$ioPage->lineMenu=xadd($ioPage->lineMenu,null,
				array(
					'img'=>'/img/panel/control_panel.png',
					'title'=>'Управление сайтом',
					'href'=>UrlGetAdd('/options/', 'account', $ioSession->user->account),
)
);
		}
		$ioPage->lineMenu=xadd($ioPage->lineMenu,null,
			array(
				'img'=>'/img/panel/www.png',
				'title'=>'Перейти на сайт',
				'href'=>'/',
)
);
		
		getJabber();
		return 1;
	}
	
	public static function actionIndex($method, $end){
		global $ioPage, $ioSession, $breadcrumbs,$ioData,$ioProjects;
		
		$ioPage->title = 'Кабинет пользователя';
		$system_menu = array();

		$desktop = array();
		$desktop['pages'] = array();
		$desktop['pages']['categoryName'] = 'Примеры';
		$desktop['pages']['items'] = array(
			'slider' => array(
				'link' => UrlGetAdd('/cabinet/test/example1', 'account', $ioSession->user->account),
				'icon' => '/img/cms/slider.png',
				'name' => 'Тест 1',
				'extraClass'=>'jsApplicationOpen',
),		
);
		
		$ioPage->system_menu = $desktop;
		self::render('io.view.cabinet.main');
	}
	
	public static function actionTestExample1($method, $end){
		global $ioPage;
		$ioPage->title = 'Таблица Тест';
		self::render('app.view.test.example1');
	}
}

Код app.view.test.example1
{% set niceTableID = random(999999) %}
{% set listEvent='listEvent'~niceTableID%}

{{
	lineMenuAdd(
		'add',
		{
			'img' : '/img/panel/add.png',
			'title' : 'Добавить запись',
			'entity' : urlGetAdd('app.model.test1.showAdd','onEvent','onEvent'),
		}
)
}}

Здесь можно ченить вывести, фильтр например

{% set res = ioCallAction(
		'app.model.test1.showNiceList',
		{
			'niceTableID': niceTableID,
			'onEvent' : 'onEvent',

			'buttons' : {
				'edit' : {
					'title' : 'Редактировать %typeLong%',
					'action' : 'app.model.test1.showEdit/?pkid=%pkid%',
					'icon' : '/img/common/edit.png',
				}
			},
			
			'buttons2' : {
				'delete' : {
					'title' : 'Удалить %typeLong%',
					'action' : 'app.model.test1.showDelete/?pkid=%pkid%',
					'icon' : '/img/common/del.png',
				}
			},
		}
)
%}

<script type='text/javascript'>
	function onEvent(e){
		var step = e.step || null;
		var event = e.event || null;
		var result = e.result || null;
		//console.log(e);
		if ((e.event == 'form_submit_and_close' || e.event == 'form_submit_and_continue') && step == 'success' && result.res.error_code == 1){
			//console.log('#niceTable{{niceTableID}}');
			$('#niceTable{{niceTableID}}').niceTable('reload',{});
		}
		return 1;
	}
</script>

Программа работает следующим образом:
Пользователь открывает вкладку /cabinet/test1. Устанавливается заголовок и запускается рендер вьюшки app.view.test.example1. Шаблон добавляет новую кнопку в верхнее меню и вызывает отображение таблицы.
Важные особенности:
· яваскрипт onEvent – callback функция для форм и таблицы. Вызывается всякий раз, когда происходит событие. Коды событий описаны в разделе «яваскрипт функция onEvent»
· добавочный класс jsApplicationOpen в lineMenu и system_menu. Если добавить к <a> тегу класс jsApplicationOpen, то ссылка начинает работать по другому. Переход не осуществляется, а перерисовывается центральная область. Таким образом организуются аякс переходы в приложении. Чтобы это правильно работало контроллер должен обладать строчкой в run_pre в самом начале. if (xpost('norender') == 1) self::setLayout('io.view.cabinet.norender').

[bookmark: _Toc393710709]Фунции модели

	
	Название функции
	Описание

	1
	rcp_rules
	

	2
	getStruct
	

	3
	getParams
	

	4
	event
	

	5
	actionShowAdd
	

	6
	actionAdd
	

	7
	actionShowEdit
	

	8
	actionEdit
	

	9
	actionShowDelete
	

	10
	actionDelete
	

	11
	actionShowNiceList
	Рисует табличку

	12
	actionNiceData
	

	13
	actionExportExcell
	Выводит код excell файла

	14
	actionShowFilterField
	Рисует элемент фильтра

	15
	actionShowFilter
	Рисует сам фильтр

	16
	actionGetData
	

[bookmark: _Toc393710710]функция rcp_rules

[bookmark: _Toc393710711]функция getStruct

Возвращает структуру данных модели.

Параметры структуры:
	
	Название
	Значение по умолчанию
	Описание

	1
	type
	
	Тип поля

	2
	label
	
	Заголовок поля

	3
	value
	
	Значение, которое будет отображаться в форме, обычно перезаписывается данными из БД

	4
	default
	
	Значение по умолчанию, если value = null

	5
	showAdd
	true
	Разрешить показ в форме добавления

	6
	showEdit
	true
	Разрешить показ в форме редактирования

	7
	hidden
	false
	Скрыть столбец из niceTable

	8
	isShow
	true
	??

	9
	infoHidden
	false
	

	10
	infoHiddenMobile
	false
	скрыть в мобильном приложении при выводе

	11
	isPrimary
	false
	Первичный ключ или нет, влияет на то будет ли он отображаться в форме удаления или нет, и подставляться в различные ссылки для идентификации объекта

	12
	options
	null
	Параметр для типа select

	13
	date_format
	null
	Параметр для типа date. Формат данных для отображения в input

	14
	jsDate_format
	null
	Параметр для типа date. Формат данных для bsdatepicker

	15
	date_output_timezone
	null
	Параметр для типа date. Временная зона клиента

	16
	entity
	null
	Параметр для типа select, источник данных.

	17
	foreignKey
	null
	Параметр для типа select, внешний ключ

Типы данных модели:
	
	Тип данных
	Описание

	1
	input
	строка

	2
	hidden
	скрытое поле, применяется для isPrimary

	3
	date
	дата

	4
	email
	емаил

	5
	phonenumber
	номер телефона

	6
	number
	число

	7
	select
	список

	8
	file
	файл

	9
	money
	денежный тип

	10
	raw-data
	Текст, выводимый в форме для справки
Дополнительные параметры:
· raw-data – сам текст

	11
	tagit
	теги

[bookmark: _Toc393710712]функция getParams

[bookmark: _Toc393710713]функция event

[bookmark: _Toc393710714]функция showAdd

Чем отличается actionShow от обычного action
функции showAdd, showEdit, showDelete, delete, add, edit. Как вызывать. Какие параметры. Что они делают.

[bookmark: _Toc393710715]Написание своего action
Ниже приведен код простого actionTest, которые возвращает error_code операция выполнена (EIO_OK). При вызове этого события, функция event init будет выполнена автоматически.

public static function doTest($result, $params){
	$p = call_user_func_array (array(get_called_class(), 'params'), array($params));
	$struct = call_user_func_array (array(get_called_class(), 'struct'), array($params));
	
	$result->error_code = EIO_OK;

	return $result;
}

[bookmark: _Toc393710716]Яваскрипт функция ioCallEntity

Как вызвать модель из javascript. Функция ioCallEntity. Параметры функции. Возратить результат в nodejs

Пример вызова функции:
ioCallEntity({
	entity : 'app.model.invoices.showGetReportByCash',
	resultType: 'json',
	params : {
	},
	'success' : function (data){
		var obj;try{obj = $.parseJSON(data);}catch (ex){obj = null;}
		if (!isExists(obj) || !isExists(obj.res) || !isExists(obj.res.error_code) || obj.res.error_code != 1){
			var err_str = jsApplication.getErrorStr(obj, (obj==null)?data:'Неизвестная ошибка');
			n_dump(err_str);
			return;
		}
		// Ошибок не обнаружено идем дальше
		n_dump(obj.content);
	}
});

[bookmark: _Toc393710717]Яваскрипт функция onEvent

Это функция callback событий, которое возникает в формах и таблицах. Функция может влиять на ход дальнейшей обработки. Если она возвратит 0, то обработка должна быть прекрашена, в протвном случае продолжена.
Примерная функция javascript имеет следующий вид:

<script type='text/javascript'>
	function onEvent(e){
		var step = e.step || null;
		var event = e.event || null;
		var result = e.result || null;
		if ((e.event == 'form_submit_and_close' || e.event == 'form_submit_and_continue') && step == 'success' && result.res.error_code == 1){
			//console.log('#niceTable{{niceTableID}}');
			$('#niceTable{{niceTableID}}').niceTable('reload',{});
		}
		return 1;
	}
</script>

В функцию onEvent передается объект e. Таблица внизу приводит список его свойств:
	
	Свойство
	Описание

	1
	event
	Событие, которое возникло

	2
	step
	Шаг:
· pre – перед тем как начать
· success – выполнено успешно
· error – выполнено с ошибкой
· complete – завершено

	3
	formID
	ID формы

	4
	nicetableID
	ID таблицы

	5
	params
	Для формы это список всех значений элементов формы

	6
	event
	Тип события:
· form_submit_and_close – нажали на кнопку сохранить и закрыть
· form_submit_and_continue – нажали на кнопку сохранить и продолжить
· form_close – происходит закрытие формы
· nicetable_reload – происходит обновление таблицы
· getEntityParams – функция, которая должна вернуть дополнительные параметры, которые используются в запросах, виде объекта

[bookmark: _Toc393710718]Вызов onEvent
Для того чтобы посылать event существует функция из io.js jsApplication.callOnEvent. Результатом будет то, что вернула функция onEvent. Вызов этой функции представлен ниже:
var the_result=null;
the_result = jsApplication.callOnEvent({
	func: '{{onEvent}}',
	params: {nicefilterID:'{{idForm}}', event:'getEntityParams'},
});

Либо просто:
jsApplication.sendEvent(e);

Параметры функции:
	
	Свойство
	Описание

	1
	func
	Функция, которая должна вызваться

	2
	params
	Параметры, которые передаются в функцию, это тот самый объект e, который содержит параметры event, step …

[bookmark: _Toc393710719]Работа с niceTable

[bookmark: _Toc393710720]Работа с классом IOForm2

a. Как создать форму через twig
b. Типы элементов формы и их параметры
c. Передача дополнительных параметров в форму через функцию params() и параметры при вызове actions
d. Какие методы есть у формы
e. Вызов и обработка капчи.
f. Проверка прав
g. Примеры форм.

Работа с WindgetModel4

Данный раздел описывает методы работы с CMS и написание виджетов. Данный раздел актуален для виджетов, написанных на основе класса WidgetModel4.

Работа с виджетами происходит из шаблонов Twig вызовами функций: widgetRender, widgetData, widgetRenderByType, widgetDataByType.

	
	Название функции
	Описание

	1
	widgetRender ($widget_name, $default)
	Вызывает рендер виджета,
· widget_name – api_name виджета, объявленный в settings.xml
· default – значение по умолчанию виджета, если значение не установлено

	2
	widgetData ($widget_name, $default)
	Получает значение данных виджета, без вызова рендера.
· widget_name – api_name виджета, объявленный в settings.xml
· default – значение по умолчанию виджета, если значение не установлено

	3
	widgetRenderByType ($widget_type, $widget_params, $default)
	Вызывает рендер виджета, используя тип и параметры виджета:
· widget_type – тип виджета: label, menu …;
· widget_params – параметры виджета;
· default – значение по умолчанию, если значение не установлено;

	4
	widgetDataByType
	Получает значение данных виджета, без вызова рендера:
· widget_type – тип виджета: label, menu …;
· widget_params – параметры виджета;
· default – значение по умолчанию, если значение не установлено;

Типы виджетов:
· label – текстовое поле
· menu - меню

Параметры виджетов, переменная widget_params:
· widget_name
· foreignPkid
· widget_uq, обычно берется из settings.xml, но если виджет там не объявлен, то можно установить widget_uq здесь.

Если widget_name объявлен в settings.xml и он не совпадает с widget_type, который вы указали в функции, то будет выдана ошибка о не соотвествии типов. Функции widgetRenderByType и widgetDataByType, обычно используются, если виджеты не были объявлены в settings.xml.

Функции виджета:
· doRender
· doSettings
· doData

[bookmark: _Toc393710721]Контроллеры

a) Что это такое зачем они нужны
b) run_pre, run_post
c) порядок поиска контроллера
d) lineMenu
e) breadcrumbs
f) layout
g) self::render, IOCore::renderAction

[bookmark: _Toc393710722]Шаблоны

a. основы twig. Циклы, условия, вызов функций, фильтров. Вывод переменных через ioPage и функцию render
b. как писать свои функции и фильтры
c. функции и фильтры twig

[bookmark: _Toc393710723]Функции

[bookmark: _Toc393710724]Функции протокола

[bookmark: _Toc393710725]Функции twig

[bookmark: _Toc393710726]Функции javascript

[bookmark: _Toc393710727]ioCallEntity

[bookmark: _Toc393710728]QRAnalyze

Анализирует входной текст QR кода и выдает его характеристики.

· type – тип QR кода. Может быть 'product', либо 'container';
· tid – ИНТ товара;
· company_number – номер компании, создавшей QR код;
· qr_number – серийный номер QR кода;
· type_id – ИД типа, типы объявлены в api.php и могут быть QR_TYPE_PRODUCT - 1, QR_TYPE_CONTAINER – 2;

[bookmark: _Toc393710729]Класс jsApplication

[bookmark: _Toc393710730]Функции для работы со временем и временными зонами

[bookmark: _Toc393710731]Спецификация протокола

a. Архитектура прав доступа.
b. Как осуществить проверку прав.
c. Как авторизоваться и выйти из системы.
d. IOSession
e. $ioSession->user
f. Как узнать в каких компаниях находится пользователь
g. Об аккаунтах
h. Массив iodbtables
i. Функции io_class_load, io_entity_load,
j. Пурифер – purifier
k. Массив ioEnum
l. Корректная работа с датами

[bookmark: _Toc393710732]Интеграция с другими проектами

a. Список команд классов и моделей, доступных для вызова из других проектов
b. проект common
c. интеграция авторизации
d. массив ioProjects

[bookmark: _Toc393710733]Архитектура проекта

Кластер – комплекс серверов, обслуживающий один проект. Кластер является целостной структурой, состоящий из нод, балансировшиков, серверов, баз данных…
Нода – комлпекс серверов, находящийся в одном датацентре, для уменьшения задержки обработки запросов. Нода в кластере синхронизируются между собой файлами и данными. Считается что нода всегда доступна, и данные с файлами нод в класетере одинаковые.
Шардинг – горизонтальное разбиение данных по нескольким серверам по определенному критерию;
Репликация – процесс копирования базы данных и постоянного копирования и применения изменений на этих базах данных. В итоге получается одинаковая база на разных серверах;
Программа прокси базы данных – программа, которая определяет, на какой шард и на какую реплику обратиться для получения данных;
Кэширование – сохранение результатов обработки информации по часто совершаемым запросам;
Балансировшик – программа, которая распределяет нагрузку от запросов пользователей между серверами приложениями, а также защишает сервера от ддос и прочих атак, на уровне сети.

[bookmark: _Toc393710734]Описание схемы:
1. Весь проект должен быть размещен минимум в трех географически удаленных датацентрах;
2. Выбор датацентра, к которому будет адресован запрос, будет выбран на основе ДНС round robin балансировки;
3. В датацентрах размещены сервера, которые содержат следующие программы:
a. балансировшик, выделенные в отдельный сервер, задача которого переадресовывать запросы, согласно нагрузки серверов веб приложения;
b. приложение, которое содержит всю логику проекта и обрабатывает запросы пользователей, выделенный в отдельный сервер. На сервере, где расположено приложение, находятся файлы, которые загружаются пользователями, которые не предназначены для хранения в облачном хранилище (например, шаблон сайта). Синхронизация файлов происходит с помощью программы lsyncd;
c. кэш часто запрашиваемых данных от пользователей, расположенный на отдельном сервере;
d. кэш поиска необходимой информации по различным критериям, расположенный там же, где и кэш часто запрашиваемых данных (скорее всего это будет одна и таже программа);
e. программа прокси к базе данных для перенаправления запросов к репликам, расположенный на том же сервере, что и приложение;
f. конфиг сервер для mongoDb, содержащий мета данный реплик, расположен на отдельном сервере;
g. база реплика для каждого шарда, на каждый шард минимум три реплики. Каждая реплика на отдельном сервере;
4. Каждый веб сервер (приложение) должен обладать программой приложением, кэшом данных и программой прокси к БД;
5. На серверах располагается только один проект, никаких других проектов на этих серверах не должно;
6. Минимальное количество серверов для проекта - 3 сервера, размещенных в разных датацентрах, на которых размещены все необходимые программы;
7. Для увеличения производительности при росте данных можно наращивать серверные мощности:
a. Увеличивать количество шардов и реплик, работающие в режиме чтения;
b. Увеличивать количество серверов, отвечающих за кэширование
c. Увеличивать количество серверов на котором размещено приложение для обработки запросов пользователя;
8. Обработка запроса от пользователя не должно превыщать 10 мс. В идеале 1мс.
9. Все сервера в проекте должны быть объединены в единую одну виртуальную сеть. Обмен трафиком должен происходить только через нее. Сеть должна быть децентрализованной. Пароли от сети должны меняться раз в день.
10. Арихитектура должна обеспечить доступ к домену test.<название сайта> для апробации новой версии приложения при его деплоя;

Файлы проекта можно кэшировать с помощью программы lsyncd –
http://habrahabr.ru/post/132098/

[bookmark: _Toc393710735]Работы схемы
1. Пользователь открывает браузер и вводит адрес проекта;
2. С помощью ДНС балансировшика должен выбираться ближайший незагруженный к пользователю сервер и отсылается запрос на него;
3. Программа принимает запрос и начинает его обработку;
4. Программа запрашивает кэш на наличие этих данных;
5. Если данных нет. программа обращается к прокси БД для обработки запроса;
6. Программа прокси на основе данных шардинга, которые находятся на конфигурационных серверах находит реплику, на которой размещены необходимые данные. Реплика должна находиться в этом же датацентре, что и сам прокси;
7. После нахождение реплики прокси отправляет запрос к БД;
8. По возращении результата от прокси программе приложению, приложение должно сохранить в кэш вернувшийся ответ на запрос, чтобы в дальнейшем не обращаться лишний раз к базе;
9. Если запрос был на изменение данных, то приложение, должно сообщить всем кэширующим серверам, что данные изменены, пусть перехешируют;

[bookmark: _Toc393710736]Ограничения
· Минимальное количество серверов на кластер – 3;
· Минимальное количество серверов в шарде базы данных – 3;
· Максимальное количество голосующих серверов в шарде при выборе первичного сервера – 7;
· Не должно быть четного количества серверов;
· Не должно быть сервера, где размещены несколько реплик одной и той же БД;
· Среднее количество серверов на один проект – 21 (в одном датацентре содержится один балансер, два приложения, 1 конфиг, два шарда, кэш);
· Рабочая нагрузка к базе данных – 3 000 запросов/сек;
· Среднее количество запросов к базе данных для генерации одной страницы: 8 запросов;
· Среднее количество активных пользователей – 300 пользователей / сек;
· Максимальное время обработки одного http запроса– 10мс;
· Коэффициент запаса прочности системы – 5;

[bookmark: _Toc393710737]Процесс обновления программного обеспечения

Обновление происходят по кластерно. Каждый сервер содержит следующие папки:
· /srv/<название проекта>/www – симлинк на рабочую версия;
· /srv/<название проекта>/test – папка симлинк на новую версию;
· /srv/<название проекта>/v/<версия> - папка с версиями проекта, синхронизируется;
· /srv/<название проекта>/tmp – временная папка;
· /srv/<название проекта>/upload – сюда заливаются файлы из форм;
· /srv/<название проекта>/data – папка с данными проекта, синхронизируется;

Процесс обновления происходит следующим образом:
1. Загрузить новую версию проекта в папку /srv/<название проекта>/v/<версия> на один из серверов;
2. Подождать пока произойдет синхронизация файлов по серверам;
3. Установить тестовый симлинк на новую версию. Теперь все сайты test.<домен сайта> будут ссылаться на сайт с новой версией, а www.<домен сайта> на текущую версию проекта;
4. Запустить скрипты, изменяющие данные базы данных;
5. Проверить работоспособность каждого сайта test.<домен сайта> и качество отображения;
6. Если все в порядке и ошибок не обнаружено, то изменить симлинк папки www на новую версию.
7. Теперь на каждом сайте кластера новая версия проекта.

[bookmark: _Toc393710738]Процесс разработки

[bookmark: _Toc393710739]Процесс обновления на новую версию

Обновление происходят по кластерно. Каждый сервер содержит следующие папки:
· /srv/<название проекта>/www – симлинк на рабочую версия;
· /srv/<название проекта>/test – папка симлинк на новую версию;
· /srv/<название проекта>/v/<версия> - папка с версиями проекта, синхронизируется между нодами;
· /srv/<название проекта>/tmp – временная папка;
· /srv/<название проекта>/upload – сюда заливаются файлы из форм;
· /srv/<название проекта>/data – папка с данными проекта, синхронизируется между нодами;

Процесс обновления происходит следующим образом:
8. Загрузить новую версию проекта в папку /srv/<название проекта>/v/<версия> на один из серверов;
9. Подождать пока произойдет синхронизация файлов по серверам;
10. Установить тестовый симлинк на новую версию. Теперь все сайты test.<домен сайта> будут ссылаться на сайт с новой версией, а www.<домен сайта> на текущую версию проекта;
11. Запустить скрипты, изменяющие данные базы данных;
12. Проверить работоспособность каждого сайта test.<домен сайта> и качество отображения;
13. Если все в порядке и ошибок не обнаружено, то изменить симлинк папки www на новую версию.
14. Теперь на каждом сайте кластера новая версия проекта.

[bookmark: _Toc393710740]Система контроля версий Mercurial

b. Написать как пользоваться Mercurial
a. Как делать комиты
b. Как обновлять. Параметр –c и его особенности. Процесс обновления
c. Как делать merge

[bookmark: _Toc393710741]Правила написания кода

1) Старайтесь больше обращаться к переменным, а не экземплярам класса

Хорошо:
$a=$cl->a;
$d[$a][‘in’]=1;
$d[$a][‘out’]=1;

Плохо:
$d[$cl->a][‘in’]=1;
$d[$cl->a][‘out’]=1;

2) В
3) Писать действия через jquery к элементам в тех же html шаблонах, где они объявляются;
4) При написании css писать полный пути к классу. Например, класс .menu;

oleObject1.bin
�

�

�

�

�

�

�

�

image1.emf
Пользователь

БД прокси

КЭШ данных

Приложение

БД прокси

КЭШ данных

Приложение

БД прокси

КЭШ данных

Приложение

реплика

реплика

Config

сервера

Шард 1

Шард 2

Backup

Сервера

БД

Нода 1 Нода 3 Нода 2

Балансировшик Балансировшик Балансировшик

Выбор датацентра

происходит на основе ДНС

Round robin балансировки

lsyncd lsyncd

