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1) /index.php. Это главный файл проекта. Он является вратами. Через него проходят все запросы, которые отправляются на сайт.
2) /conf.php. Конфигурационный файл, который является уникальным для каждого сервера. Содержит основные настройки проекта, пароли от баз данных…
3) /cron.php. Файл, обслуживающий автоматически выполняемые скрипты, которые выполняются через определенные промежутки времени. Данный файл запускается каждую минуту и в зависимости от настроек таблицы cron запускает скрипт. Также возможен ручной запуск скрипта: через командную строку и через веб браузер.
Для запуска через командную строку в консоли наберите:
$ cron.php <id скрипта>
Для запуска через браузер наберите:
http://<название проекта>/cron.php?id=<id скрипта>
<id скрипта> берется из таблицы крон

4) /app/. Папка, которая содержит всю логику программы
5) /app/i.php. Файл, содержащий настройки проекта, которые должны быть выполнены обязательно вне зависимости от запроса. Например, подключение к базе данных или объявление собственных функций проекта.
6) /app/controller/. Папка, содержащие контроллеры
7) /app/dictionary/. Папка, содержащая тексты переводов на другие языки.
8) /app/view/. Папка, содержащие html шаблоны на основе шаблонизатора Twig.
9) /app/view/layout/. Папка, содержащие шаблоны, которые отвечают за оформление всей страницы: хеадер, футер, меню …
10) /app/view/cabinet/<module>/. Папка, содержащие страницы сайта модулей. Обычно сюда ложатся файлы модулей личного кабинета.
Примеры:
· /app/view/cabinet/crm/ - здесь лежат страницы кабинета CRM мобильного приложения;
· /app/view/cabinet/goods/ - здесь лежат страницы кабинета trade.bmcsales.kz для работы с товарами;
11) /app/view/pages/<module>/. Папка, содержащие внешние страницы сайта.
Примеры:
· /app/view/pages/index.html – главная страница онлайн карт;
· /app/view/pages/layout.html – шаблон онлайн карт;
· 
· /app/view/cabinet/goods/ - здесь лежат страницы кабинета trade.bmcsales.kz для работы с товарами;

12) /img/. Папка для картинок
13) /img/common/. Общие картинки для всех проектов. Входит в состав протокола. Является символичекой ссылкой на /app/io/examples/modules/images/common/.
14) /img/panel/. Верхняя панель. Входит в состав протокола. Является символичекой ссылкой на /app/io/examples/modules/images/panel/.
15) /files/modules/. Символическая ссылка на /app/io/examples/modules/
16) /js/. Папка со скриптами проекта.
17) /css/. Папка с css проекта.
18) /cache/twig/. Папка с кэшем tiwg.
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Задачи:
· запретить доступ к .hg;
· предоставить прокси к xmpp через /xmppproxy;
· предоставить доступ к программе кроссерверного обмена через /entity;
· раздача статического контента из папок ./js, ./files, ./css, ./img;
· запрет выполнения php скриптов в папках:
· ./template;
· ./files;
· ./app;
· ./js;
· ./css;
· ./img;
· запрет выполнения cgi;
· переадресация всех запросов на index.php, реализовация rewrite_engine;
· разрешить доступ к cron.php;
· запретить выполнение php скриптов, только index.php и cron.php;

Конфигурационный файл хоста nginx:

Если нужно запретить выполнение php файлов в паке то писать так
    location ~ /mm/ {
        root   /srv/httpd/default;
        autoindex on;
        disable_symlinks off;
        auth_basic "Restricted";
        auth_basic_user_file /srv/httpd/default/mm/.htpasswd;
        types { }
        default_type text/plain;
        break;
    }
    location ~ \.php$ {
        root /srv/httpd/default;
        fastcgi_pass 127.0.0.1:9000;
        fastcgi_index index.php;
        fastcgi_param SCRIPT_FILENAME /srv/httpd/default$fastcgi_script_name;
        include fastcgi_params;
    }

Кофнигурационный файл Apache
<VirtualHost *:8008>
        DocumentRoot /srv/httpd/bmcsales.kz/alatau/www
        ErrorLog /var/log/httpd/alatau.err.log
        DirectoryIndex index.php
        ServerName alatau.bmcsales.kz 
        ServerAlias *.alatau.bmcsales.kz *.alatay.bmcsales.kz 
        <Directory /srv/httpd/bmcsales.kz/alatau/www>
                Options None +FollowSymlinks -ExecCGI
                AllowOverride All
        </Directory>
        php_admin_value open_basedir "/srv/httpd/bmcsales.kz/alatau/upload:/tmp/:/srv/httpd/bmcsales.kz/alatau"
        php_admin_value upload_tmp_dir "/srv/httpd/bmcsales.kz/alatau/upload"
        php_admin_value session.save_path "/srv/httpd/bmcsales.kz/alatau/sessions"
        <DirectoryMatch /srv/httpd/alatau/www/template/(.+/)files>
                RewriteEngine Off
        </DirectoryMatch>
        <DirectoryMatch /srv/httpd/alatau/www/template>
                AllowOverride None
                AddHandler None .php
                AddHandler None .php3
                AddHandler None .php4
                AddHandler None .php5
                AddHandler None .phtml
                php_value engine off
        </DirectoryMatch>
        <DirectoryMatch /srv/httpd/alatau/www/files>
                AllowOverride None
                AddHandler None .php
                AddHandler None .php3
                AddHandler None .php4
                AddHandler None .php5
                AddHandler None .phtml
                RewriteEngine Off
                php_value engine off
        </DirectoryMatch>
        <DirectoryMatch /srv/httpd/alatau/www/custom>
                AllowOverride None
                AddHandler None .php
                AddHandler None .php3
                AddHandler None .php4
                AddHandler None .php5
                AddHandler None .phtml
                RewriteEngine Off
                php_value engine off
        </DirectoryMatch>
</VirtualHost>
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Отложенная загрузка скриптов происходит через библиотеку yepnope и служит для ускорения отображения html страницы. Теперь для того чтобы страница отобразилась не требуется погрузки всех скриптов. Необходимые скрипты подгружаются до отображения, а все остальные после.
Ниже приведен код загрузки кабинета. Сначала погружаются необходимые css, затем js: bootstrap css, yepnope, io.base.js, jquery.
Tinymce подгружается только из-за того, что он не работает через yepnope.
Далее подгрузка осуществляется через плагин yepnope следующих модулей: jquery-ui, bootstrap js, liveready, io.js, jquery.migrate. В принципе список может быть длинным.
$.holdReady(true) говорит jquery, чтобы он задержал обработчик $(document).ready. Он сработает после того как выполнится команда $.holdReady(false). Все команды, которые используют скрипты bootstrap, jquery-ui должны обрабатыватся в $(document).ready, иначе произойдет ошибка javascript, т.к. скрипт еще не подгрузился.
Важной особенностью является команда ioGetModuleUrls({module:'jquery-ui', push: 1}). Она возвращает ссылки js и css, которые необходимо подгрузить для работы модуля jquey-ui. Причем после срабатывания этой функции, данные заносятся в хеш, и повторно не возвращаются. Это нужно для того, чтобы yepnope не грузил дважды один и тот же скрипт.

	<script type='text/javascript'>
		$.holdReady(true);
		var load = new Array();
		//load = load.concat(ioGetModuleUrls({module:'jquery-ui', push: 1}));
		//load = load.concat(ioGetModuleUrls({module:'jquery-ui-flick', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'bootstrap', version: 3, push: 1}));
		load = load.concat(ioGetModuleUrls({module:'liveready', push: 1}));
		load = load.concat(['/files/modules/io.js?_=15']);
		load = load.concat(['/files/modules/jquery/jquery-migrate-1.2.1.min.js']);
		load = load.concat(ioGetModuleUrls({module:'jquery-blockUI', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'the-modal', push: 1}));
		
		yepnope({
			load: load,
			complete: function () {
				jsApplication.busyEnabled = true;
				jsApplication.openAjaxEnabled = true;
				ioInit({
					'user.id':'{{user.id}}',
					'user.login':'{{user.login}}',
					'user.account':'{{user.account}}',
					'currentlang':'def',
				});
				$.blockUI.defaults.theme=true;
				$.holdReady(false);
				
				if (jsApplication.__busy <= 0){
					$('#loadBusy').css('display','none');
					$('body').removeClass('scroll-lock');
				}
				//jsApplication.busy(true);
			}
		});
		$(document).ready(function(){
		});
	</script>
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Очень часто встречается задача, что диалоговое окно использует свой скрипт, который редко встречается в проекте, например jquerytree. Его не желательно каждый раз грузить при генерации страницы. В этом случае так же используется yepnope.
В ниже приведенном коде подгружаются модули noty, noty-topRight, jquey-contextmenu, jquery-dynatree, chosen. Если модули ранее не загружались, то срабатывает функция onChoosenSelect(), которая инициирует работу с chosen (список функций можно посмотреть в io.js), а также срабатывает функция dynatreeDo().dynatreeDo – это пользовательская функция, которая должна инициировать работу с деревом. Обычно функции инициирующие работу пишутся в document.ready, но т.к. мы имеем дело диалоговым окном document.ready не сработает. Если диалоговое окно подгружалось несколько раз, то естественно load будет пустой и скрипты второй раз грузится не будут, поэтому просто выполнится функция dynatreeDo и инициирует работу с деревом. 
Причина, по которой написан setTimeout следующая: обычно подгрузка пишеться в самом верху, а функция описана ниже.

<script type='text/javascript'>
	jsApplication.pageLoad(function(){
		{% set variable = 'var_'~random(999999)%}
		var {{variable}}=0;
		var param='';
		var load = new Array();
		load = load.concat(ioGetModuleUrls({module:'nicetable', push: 1}));
		load = load.concat(ioGetModuleUrls({module:'bootstrap-editable', version:'1.5.1-3', push: 1}));
		if (jsApplication.busy && load.length > 0) {jsApplication.busy(true); {{variable}}=1;}
		if (load.length > 0){
			yepnope({
				load: load,
				complete: function () {
					if (jsApplication.busy && {{variable}}) jsApplication.busy(false);
					onBootstrapEditable();
					setTimeout('{{niceTableID}}()',10);
				},
			});
		}
		else{
			if (jsApplication.busy && {{variable}}) jsApplication.busy(false);
			setTimeout('{{niceTableID}}()',10);
		}
	});
</script>
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a. ioGetMongoConnection(),ioSetMongoConnection()
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b. Функция IOCore::Instance()
c. Функция IOCore::call(), IOCore::callAction()
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d. Функции IOHash->get(), IOHash->set, IOHash->delete()
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a. работа с язаками. Dictionary, IOCore::loadDictionary(), IOCore:: getTranslate()
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Каждый класс в системе обладает уникальным именем. Из любой части кода, без разницы находится ли код в проекте, или в другом, существует возможность обратится к методам этого класса. Для этого необходимо правильно задать имя.
Имя класса состоит из следующих частей: <project name>.class[.<path>].<className>
<project name> - это имя проекта, зарегистрированная в общей базе данных <path> - это путь к классу в этом проекте. путь может не существовать. Это означает, что класс лежит в папке /app/class <classNamae>. Кроме описания класса в этом файле ничего не должно быть. Закрывать ?> не обязательно.
Примеры имен: 
com.class.user - класс пользователей, которые находится в проекте Common, который отвечает за авторизацию, регистрацию пользователей
com.class.crm.client - класс в CRM, который позволяет зарегистрировать клиента
app.class.test - Тестовый класс, который находится в том же проекте, где осуществляется к нему обращение
Ниже приведен пример класса Test. В папке /app/class необходимо создать файл test.php, название класса должно быть таким же как и название файла без расширения php и с большой буквы.
Обязательные функии при написания класса:
· rcp_rules возращает разрешенные функции, которые можно запускать удаленно с других проектов;
· tablename возращает имя базы данных, куда будут сохранятся данные;
· struct возращает структуру базы данных;

<?

class Test extends IOMongoObject{
	public static function rcp_rules(){
		$arr=parent::rcp_rules();
		//$arr['object']['getPage']=1;
		return $arr;
	}
	
	public function tablename(){
		return MONGO_DATABASE.'.testclass';
	}
	
	public function struct(){
		return array(
			'fields'=>array(
				'pkid'=>array(
					'type'=>'sql',
					'func'=>'pkid',
					'datatype'=>'long',
				),
				'isDeleted'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
				),
				'gmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
				),
				'gmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
				),
				'ugmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'long',
				),
				'ugmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'long',
				),	
			),
			'primary'=>array(
				0=>'pkid',
			),
		);
	}
}

Необходимые поля, когда всегда должны быть:
· pkid тип long
· isDeleted тип boolean
· gmtimeAdd тип nohtml, хранит значение в формате rfc822
· gmtimeChange тип nohtml, хранит значение в формате rfc822
· ugmtimeAdd тип long, хранит значения в unix timestamp
· ugmtimeChange тип long, хранит значения в unix timestamp

Каждое поле задается следующим описанием характеристик:
· type - тип поля. Различают sql и property
· default - значение по умолчанию
· readonly - только чтение, запрещено редактирование и создание
· nocreate - запрещено инициализация переменной при ее создании
· noedit - запрещено редактирование переменной, но при создании ее можно проиницировать
· datatype - тип данных поля
· struct - структура поля (используется для массивов)
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1. Целочисленные
a. integer – 32 битное знаковое целое
b. long – 64 битное знаковое целое
2. Вещественные
a. long – действительное число
3. Логические
a. boolean логический тип
4. Строки
a. string – строка текста
b. html – строка, обработанная командой purify (безопасная для хранения html данные)
c. nohtml – строка из которой вырезаны все html теги
d. htmlescape – строка  в которой экранированы все html теги
5. Дата
a. datetime – строка, в которой сохранены дата, время и временная зона
6. Массивы
a. array – структурированный массив
b. collection – не структурированный массив
7. Деньги
a. money - деньги

Ниже приведена тестовая структура основных типов:
<?php
public function struct(){
		return array(
			'fields'=>array(
				'pkid'=>array(
					'type'=>'sql',
					'func'=>'pkid',
					'datatype'=>'long',
				),
				'typeInt'=>array(
					'type'=>'sql',
					'datatype'=>'int',
				),
				'typeLong'=>array(
					'type'=>'sql',
					'datatype'=>'long',
				),
				'typeDouble'=>array(
					'type'=>'sql',
					'datatype'=>'double',
				),
				'typeBool'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
				),
				'typeString'=>array(
					'type'=>'sql',
					'datatype'=>'string',
				),
				'typeDate'=>array(
					'type'=>'sql',
					'datatype'=>'date',
				),
				'typeArray'=>array(
					'type'=>'sql',
					'datatype'=>'array',
					'struct'=>'long'
				),
				'typeMoney'=>array(
					'type'=>'sql',
					'datatype'=>'money',
				),
				'isDeleted'=>array(
					'type'=>'sql',
					'datatype'=>'boolean',
				),
				'gmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
				),
				'gmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'nohtml',
				),
				'ugmtimeAdd'=>array(
					'type'=>'sql',
					'datatype'=>'long',
				),
				'ugmtimeChange'=>array(
					'type'=>'sql',
					'datatype'=>'long',
				),
			),
			'primary'=>array(
				0=>'pkid',
			),
		);
	}
?>

Пример создания класса приведен ниже:
<?php
$c=IOCore::Instance('app.class.test');

$c->typeInt=10; // NumberInt(10)
$c->typeLong=10; // NumberLong(10)
$c->typeDouble=10; // 10
$c->typeBool=true; // true
$c->typeString=10; // string("10")

$c->typeDate=time(); // "10"
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','Asia/Almaty',date_default_timezone_get()); // Сохранить время в поясе 'Asia/Almaty' //ISODate("2014-02-02T06:00:00.0Z")
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','CET',date_default_timezone_get()); // Сохранить текущее время по центральному европейскому времени //ISODate("2014-02-02T06:00:00.0Z"
$c->typeDate=iostrtodate(DATE_RFC822,'2014-02-02 12:00:00','UTC',date_default_timezone_get()); // Сохранить текущее время по гринвичу //ISODate("2014-02-02T06:00:00.0Z")

$c->typeArray=array(1,2,3,4,5); // Массив из чисел
/*
В базе будет
"typeArray": {
	"0": NumberLong(1),
	"1": NumberLong(2),
	"2": NumberLong(3),
	"3": NumberLong(4),
	"4": NumberLong(5) 
}
*/

$c->typeMoney=array('value'=>10,'currency'=>'KZT'); // Денежный тип
/*	
В базе будет
"typeMoney": {
	"value": "10",
	"currency": "KZT" 
}
*/

$r=$c->create();

v_dump($r);
v_dump($c->error_str);
v_dump($c->error_code);
v_dump($c->__mongo_data);
?>

Код ошибки будет сохранен в переменной $c->error_code, данные, которые были отправлены в базу MongoDB, будут сохранены в переменной $c->__mongo_data.

[bookmark: _Toc393710697]Массивы

В ниже приведенном коде описывается массив, элементами которого будут целочисленные 64 битные знаковые числа. Если массив не задан, то по умолчанию сохранится null.

'typeArray'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>'long',
	'default'=>null
),
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Если указать параметр noKeys, то ключи массива сохранятся не будут.
'typeArray'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>'long',
	'default'=>null
),

Вместо значений a,b,c,d в базе сохранятся значения 0,1,2,3.
<?php
$c->typeArray=array('a'=>1,'b'=>2,'c'=>3,'d'=>4); // Массив из чисел
/*
В базе будет
"typeArray": {
	"0": NumberLong(1),
	"1": NumberLong(2),
	"2": NumberLong(3),
	"3": NumberLong(4),
}
*/
?>
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Фраемворк может хранить подмассивы как элементы массива. Это задается с помощью параметра struct при описании массива.

Пример, структура данных выглядит следующим образом:
'typeArray2'=>array(
	'type'=>'sql',
	'datatype'=>'array',
	'struct'=>array(
		'fieldLong'=>array(
			'datatype'=>'long',
			'default'=>0,
		),
		'fieldArray'=>array(
			'datatype'=>'array',
			'struct'=>'long',
			'noKeys'=>1,
			'default'=>array(1,2,3),
		),
		'fieldMoney'=>array(
			'datatype'=>'money',
			'default'=>array('value'=>0,'currency'=>'KZT'),
		),
		'fieldString'=>array(
			'datatype'=>'nohtml',
			'default'=>'строка по умолчанию',
		),
	),
	'noKeys'=>1,
),

Если сохранить данные в массив:
$c->typeArray2=array(
	array(
		'fieldString'=>'Это строка <br/>!',
		'fieldMoney'=>array('value'=>10,'currency'=>'KZT'),
		'fieldLong'=>10,
		'fieldArray'=>array(1,2,3,4,5),
	),
	'second'=>array(
		'fieldArray'=>array('a'=>1),
	),
	array(),
);

То в Mongo сохранятся следующие данные:
/*
"typeArray2": {
	"0": {
		"fieldLong": NumberLong(10),
		"fieldArray": {
			"0": NumberLong(1),
			"1": NumberLong(2),
			"2": NumberLong(3),
			"3": NumberLong(4),
			"4": NumberLong(5) 
		},
		"fieldMoney": {
			"value": NumberInt(10),
			"currency": "KZT" 
		},
		"fieldString": "Это строка !" 
	},
	"1": {
		"fieldLong": NumberLong(0),
		"fieldArray": {
			"0": NumberLong(1) 
		},
		"fieldMoney": {
			"value": NumberInt(0),
			"currency": "KZT" 
		},
		"fieldString": "строка по умолчанию" 
	},
	"2": {
		"fieldLong": NumberLong(0),
		"fieldArray": {
			"0": NumberLong(1),
			"1": NumberLong(2),
			"2": NumberLong(3) 
		},
		"fieldMoney": {
			"value": NumberInt(0),
			"currency": "KZT" 
		},
		"fieldString": "строка по умолчанию" 
	} 
},
*/
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Свойства – это специальные переменные, которые реально значения не хранят, эти значения получается на основе данных класса.

Объявим в классе новое поле:

'typeProperty1'=>array(
	'type'=>'property',
	'datatype'=>'long',
	'func'=>'property1',
),
'typeProperty2'=>array(
	'type'=>'property',
	'datatype'=>'long',
	'func'=>'property2',
),

И функцию в классе:

public function property1($method, $name, $value){
	v_dump($method . " " . $name . " " .$value );
	if ($method == 'set'){
		if (!isset($this->__data[$name]))$this->__data[$name]=$value;
		else $this->__data[$name]+=$value;
	}
	else if ($method == 'get'){
		// Ничего не делаем, пусть значение будет то же
	}
}

public function property2($method, $name, $value){
	v_dump($method . " " . $name . " " .$value );
	if ($method == 'set'){
	}
	else if ($method == 'get'){
		// Ничего не делаем, пусть значение будет то же
		$this->__data[$name] = $this->typeProperty1 * 2;
	}
}

Если выполнить следующие команды:

$c->typeProperty1=1; // в typeProperty1 будет 1
$c->typeProperty1=2; // в typeProperty1 будет 3
$c->typeProperty1=3; // в typeProperty1 будет 4
v_dump($c->typeProperty1); // Выведет 6 
v_dump($c->typeProperty2); // Выведет 12

При выполнении этих команд будет постоянно вызывать функция property1 класса. При сохранении значения, старое значение будет увеличиваться на величину нового значение. При получении $c->typeProperty2 вызовется метод property2 и установит новое значение для поля typeProperty2.

То на экране выйдет:

string("set typeProperty1 1")
string("set typeProperty1 2")
string("set typeProperty1 3")
string("get typeProperty1 ")
integer(6)
string("get typeProperty2 ")
string("get typeProperty1 ")
integer(12)

При установке нового значения вызовется функция property1 с параметрами $method=’set’, $name = ‘typeProperty1’. Это означает, что идет установка значения поля typeProperty1, При получении аналогично вызовется функция, только с $method=’get’. Т.к. функция ничего не устанавливает, на экран выведется null.

Объявим в классе поля, но вместо property запишем sql, теперь новые значения будут сохранятся в базе данных. Но метод set в функциях вызываться не будет, только метод get.

'typeProperty1'=>array(
	'type'=>'sql',
	'datatype'=>'long',
	'func'=>'property1',
),
'typeProperty2'=>array(
	'type'=>'sql',
	'datatype'=>'long',
	'func'=>'property2',

Выполним команды:

$c->typeProperty1=1; // в typeProperty1 будет 1
$c->typeProperty1=6; // в typeProperty1 будет 6
v_dump($c->typeProperty1); // Выведет 6
v_dump($c->typeProperty2); // Выведет 12

На экран выведется:

string("get typeProperty1 ")
integer(6)
string("get typeProperty2 ")
string("get typeProperty1 ")
integer(12)
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Правила построения запроса:

	Запрос
	Аналог mysql

	Array(
‘a’=>2
)
	Select * from table where a = 2

	Array(
‘!=a’=>2
)
	Select * from table where a != 2

	Array(
‘a’=>array(1,2,3,4)
)
	Select * from table where a in (1,2,3,4)

	Array(
‘!=a’=>array(1,2,3,4)
)
	Select * from table where not (a in (1,2,3,4))

	array(
'$or'=>array(
	array('typeInt'=>2,),
	array('typeInt'=>1,),
))
	Select * from table where typeInt = 2 or typeInt = 1

	array(
'$and'=>array(
	array(
		'$or'=>array(
			array('typeInt'=>2,),
			array('typeInt'=>1,),
		),
	),
	array(
		'$or'=>array(
			array('typeDouble'=>3,),
			array('typeDouble'=>2,),
		),
	),
),
)
	Select * from table where (typeInt = 2 or typeInt = 1) and (typeDouble = 3 or typeDouble = 2)

	
	





подключение к solr, метод dbsearch(). Синтаксис solr
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метод dbsearch2, параметр фильтр. Как делать запросы к базе. Параметр out=>array, out=>object. Как искать в базе по тексту. Синтаксис фильтра.
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параметры методов create, update: w, j, gmtimeAdd, gmtimeChange, safe, changeVersion, insert_or_update
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Класс мы создали, теперь необходимо создать модель. Модель - это объект в системе, который отвечает за логику работы приложения. Модель отвечает за проверку прав, выполнение CRUD операций, прорисовку таблиц, форм. К методам модели можно обращаться из других проектов. Модель связывает пользовательский интерфейс и данные, которые находится в базе данных. 
Важно! модель на экран ничего не должна выводить он должна либо вызывать функцию render, либо возвращать данные через return 
Закрывать тег ?> в файле не обязательно.
Для примера, создадим модель, для класса Test.

Код app.model.test1
<?
	class Test1Model extends IOModel4{
		
		public static function rcp_rules(){
			return array(
				'static'=>array(
					'actionShowNiceList'=>1,
					'actionShowNiceFilter'=>1,
					'actionShowNiceFilterField'=>1,
					'actionNiceData'=>1,
					'actionShowAdd'=>1,
					'actionAdd'=>1,
					'actionShowEdit'=>1,
					'actionEdit'=>1,
					'actionShowDelete'=>1,
					'actionDelete'=>1,
					'actionEditField'=>1,
				),
			);
		}
	
		public static function getStruct($params){
			global $ioSession;
			$fields=array(
				'pkid'=>array(
					'type'=>'hidden',
					'showAdd'=>false,
					'hidden'=>true,
					'isPrimary'=>true,
				),
				'typeInt'=>array(
					'label'=>'Int',
					'type'=>'number',
					'filter'=>true,
				),
				'typeLong'=>array(
					'label'=>'Long',
					'type'=>'select',
					'options'=>array(
						0=>'ноль',
						1=>'один',
						2=>'два',
						3=>'три',
						4=>'четыре',
					),
					'filter'=>true,
				),
				'typeDouble'=>array(
					'label'=>'Double',
					'type'=>'input',
					'filter'=>true,
				),
				'typeBool'=>array(
					'label'=>'Bool',
					'type'=>'checkbox',
					'filter'=>true,
				),
				'typeString'=>array(
					'label'=>'String',
					'type'=>'input',
					'filter'=>true,
				),
				'typeDate'=>array(
					'label'=>'Date',
					'type'=>'date',
					'date_format'=>'d-m-Y',
					'jsDate_format'=>'dd-mm-yyyy',
					'date_output_timezone'=>$ioSession->user->timezone,
					'filter'=>true,
				),
			);
			return array(
				'fields'=>$fields,
				'primary'=>array('pkid'),
			);
		}

		public static function getParams($params){
			$result=array(
				'class'=>'app.class.test',
				'model'=>'app.model.test1',
				'classSearch'=>'app.class.test.dbsearch3', 
				'forceDelete'=>0,
				'renderForm'=>'io.view.nicetable.niceForm',
				'renderFilterElem'=>'io.view.nicetable.niceFilterElem',
				'renderFilter'=>'io.view.nicetable.niceFilter',
			);
			return $result;
		}
		
		public static function event($event='', $params=array()){
		
			$struct = xarr($params,'struct',array());
			$object = xarr($params,'object',array());
			$form = xarr($params,'form',array());
			$p = xarr($params,'params',array());
		
			if ($event == 'init'){ 
				return EIO_OK;
			}
			
			else if ($event == 'searchFilter'){ 
				$params['xfilter']=array(
					'isDeleted'=>false,
				);
				$filter=parent::event($event,$params);
				return $filter;
			}
			
			else if ($event == 'getObjectFilter'){ 
				$params['xfilter']=array(
					'isDeleted'=>false,
				);
				$filter=parent::event($event,$params);
				return $filter;
			}
			
			else if ($event == 'search_post'){ 
				parent::event($event,$params); //Вызываем старый event
			}
			
			return parent::event($event,$params);
		}
		
		public static function doTest($result, $params){
			$p = call_user_func_array (array(get_called_class(), 'params'), array($params));
			$struct = call_user_func_array (array(get_called_class(), 'struct'), array($params));
			
			$result->error_code = EIO_OK;
			
			return $result;
		}
	}
Код app.controller.cabinet
<?

class CabinetController extends IOController {
	public static function layout() {
		return "io.view.cabinet.index";
	}
	
	public static function run_pre($method, $end){
		global $ioPage, $breadcrumbs, $ioSession, $ioData, $ioHash;
		
		if (xpost('norender') == 1) self::setLayout('io.view.cabinet.norender');
		
		IOCore::loadDictionary(IO_PATH . '/app/dictionary/cms.php');
		
		//Блокируем неавторизованных
		if ($ioSession->isGuest()){
			self::render('io.view.denyAuth',array());
			return 0;
		}
		//Список закладок
		$page_url = $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'];
		$bookmarks = array();
		$topBookmarks = array();
		$ioPage->bookmarks = $bookmarks;            //Закладки у аккаунта
		$ioPage->topBookmarks = $topBookmarks;      //Закладки под строкой меню
		
		$ioPage->addBreadcrumbs($breadcrumbs['projects'], 'projects');
		$ioPage->addBreadcrumbs($breadcrumbs['account'], 'account');
		$ioPage->selectBreadcrumbs('projects', 'eop');
		
		$ioPage->lineMenu=array(
			/*
			array(
				'img'=>'/img/panel/home2.png',
				'title'=>'Личный кабинет',
				'href'=>UrlGetAdd(xarr($ioProjects,'com'), 'account', $ioSession->user->account),
			),
			*/
			array(
				'img'=>'/img/panel/eop.png',
				'title'=>'Кабинет',
				'href'=>UrlGetAdd('/cabinet', 'account', $ioSession->user->account),
				'extraClass'=>'jsApplicationOpen',
			),
			
		);
		
		$site=xarr($ioPage->site,'object');
		
		if ($site === null){
			self::render('app.view.deny',array());
			return 0;
		}		
		
		if (site_permission($site->pkid)){
			$ioPage->lineMenu=xadd($ioPage->lineMenu,null,
				array(
					'img'=>'/img/panel/control_panel.png',
					'title'=>'Управление сайтом',
					'href'=>UrlGetAdd('/options/', 'account', $ioSession->user->account),
				)
			);
		}
		$ioPage->lineMenu=xadd($ioPage->lineMenu,null,
			array(
				'img'=>'/img/panel/www.png',
				'title'=>'Перейти на сайт',
				'href'=>'/',
			)
		);
		
		getJabber();
		return 1;
	}
	
	public static function actionIndex($method, $end){
		global $ioPage, $ioSession, $breadcrumbs,$ioData,$ioProjects;
		
		$ioPage->title = 'Кабинет пользователя';
		$system_menu = array();

		$desktop = array();
		$desktop['pages'] = array();
		$desktop['pages']['categoryName'] = 'Примеры';
		$desktop['pages']['items'] = array(	
			'slider' => array(
				'link' => UrlGetAdd('/cabinet/test/example1', 'account', $ioSession->user->account),
				'icon' => '/img/cms/slider.png',
				'name' => 'Тест 1',
				'extraClass'=>'jsApplicationOpen',
			),		
		);
		
		$ioPage->system_menu = $desktop;
		self::render('io.view.cabinet.main');
	}
	
	public static function actionTestExample1($method, $end){
		global $ioPage;
		$ioPage->title = 'Таблица Тест';
		self::render('app.view.test.example1');
	}
}

Код app.view.test.example1
{% set niceTableID = random(999999) %}
{% set listEvent='listEvent'~niceTableID%}

{{
	lineMenuAdd(
		'add',
		{
			'img' : '/img/panel/add.png',
			'title' : 'Добавить запись',
			'entity' : urlGetAdd('app.model.test1.showAdd','onEvent','onEvent'),
		}
	)
}}

<br/>
Здесь можно ченить вывести, фильтр например<br/>
<br/>


{% set res = ioCallAction(
		'app.model.test1.showNiceList',
		{
			'niceTableID': niceTableID,
			'onEvent' : 'onEvent',

			'buttons' : {
				'edit' : {
					'title' : 'Редактировать %typeLong%',
					'action' : 'app.model.test1.showEdit/?pkid=%pkid%',
					'icon' : '/img/common/edit.png',
				}
			},
			
			'buttons2' : {
				'delete' : {
					'title' : 'Удалить %typeLong%',
					'action' : 'app.model.test1.showDelete/?pkid=%pkid%',
					'icon' : '/img/common/del.png',
				}
			},
		}
	)
%}
<br/>

<script type='text/javascript'>
	function onEvent(e){
		var step = e.step || null;
		var event = e.event || null;
		var result = e.result || null;
		//console.log(e);
		if ((e.event == 'form_submit_and_close' || e.event == 'form_submit_and_continue') && step == 'success' && result.res.error_code == 1){
			//console.log('#niceTable{{niceTableID}}');
			$('#niceTable{{niceTableID}}').niceTable('reload',{});
		}
		return 1;
	}
</script>

Программа работает следующим образом:
Пользователь открывает вкладку /cabinet/test1. Устанавливается заголовок и запускается рендер вьюшки app.view.test.example1. Шаблон добавляет новую кнопку в верхнее меню и вызывает отображение таблицы. 
Важные особенности:
· яваскрипт onEvent – callback функция для форм и таблицы. Вызывается всякий раз, когда происходит событие. Коды событий описаны в разделе «яваскрипт функция onEvent»
· добавочный класс jsApplicationOpen в lineMenu и system_menu. Если добавить к <a> тегу класс jsApplicationOpen, то ссылка начинает работать по другому. Переход не осуществляется, а перерисовывается центральная область. Таким образом организуются аякс переходы в приложении. Чтобы это правильно работало контроллер должен обладать строчкой в run_pre в самом начале. if (xpost('norender') == 1) self::setLayout('io.view.cabinet.norender').

[bookmark: _Toc393710709]Фунции модели

	
	Название функции
	Описание

	1
	rcp_rules
	

	2
	getStruct
	

	3
	getParams
	

	4
	event
	

	5
	actionShowAdd
	

	6
	actionAdd
	

	7
	actionShowEdit
	

	8
	actionEdit
	

	9
	actionShowDelete
	

	10
	actionDelete
	

	11
	actionShowNiceList
	Рисует табличку

	12
	actionNiceData
	

	13
	actionExportExcell
	Выводит код excell файла

	14
	actionShowFilterField
	Рисует элемент фильтра

	15
	actionShowFilter
	Рисует сам фильтр

	16
	actionGetData
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Возвращает структуру данных модели.

Параметры структуры:
	
	Название
	Значение по умолчанию
	Описание

	1
	type
	
	Тип поля

	2
	label
	
	Заголовок поля

	3
	value
	
	Значение, которое будет отображаться в форме, обычно перезаписывается данными из БД

	4
	default
	
	Значение по умолчанию, если value = null

	5
	showAdd
	true
	Разрешить показ в форме добавления

	6
	showEdit
	true
	Разрешить показ в форме редактирования

	7
	hidden
	false
	Скрыть столбец из niceTable

	8
	isShow
	true
	??

	9
	infoHidden
	false
	

	10
	infoHiddenMobile
	false
	скрыть в мобильном приложении при выводе

	11
	isPrimary
	false
	Первичный ключ или нет, влияет на то будет ли он отображаться в форме удаления или нет, и подставляться в различные ссылки для идентификации объекта

	12
	options
	null
	Параметр для типа select

	13
	date_format
	null
	Параметр для типа date. Формат данных для отображения в input

	14
	jsDate_format
	null
	Параметр для типа date. Формат данных для bsdatepicker

	15
	date_output_timezone
	null
	Параметр для типа date. Временная зона клиента

	16
	entity
	null
	Параметр для типа select, источник данных.

	17
	foreignKey
	null
	Параметр для типа select, внешний ключ



Типы данных модели:
	
	Тип данных
	Описание

	1
	input
	строка

	2
	hidden
	скрытое поле, применяется для isPrimary

	3
	date
	дата

	4
	email
	емаил

	5
	phonenumber
	номер телефона

	6
	number
	число

	7
	select
	список

	8
	file
	файл

	9
	money
	денежный тип

	10
	raw-data
	Текст, выводимый в форме для справки
Дополнительные параметры:
· raw-data – сам текст

	11
	tagit
	теги
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Чем отличается actionShow от обычного action
функции showAdd, showEdit, showDelete, delete, add, edit. Как вызывать. Какие параметры. Что они делают. 

[bookmark: _Toc393710715]Написание своего action
Ниже приведен код простого actionTest, которые возвращает error_code операция выполнена (EIO_OK). При вызове этого события, функция event init будет выполнена автоматически.

public static function doTest($result, $params){
	$p = call_user_func_array (array(get_called_class(), 'params'), array($params));
	$struct = call_user_func_array (array(get_called_class(), 'struct'), array($params));
	
	$result->error_code = EIO_OK;

	return $result;
}
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Как вызвать модель из javascript. Функция ioCallEntity. Параметры функции. Возратить результат в nodejs

Пример вызова функции:
ioCallEntity({
	entity : 'app.model.invoices.showGetReportByCash',
	resultType: 'json',
	params : {
	},
	'success' : function (data){ 
		var obj;try{obj = $.parseJSON(data);}catch (ex){obj = null;}
		if ( !isExists(obj) || !isExists(obj.res) || !isExists(obj.res.error_code) || obj.res.error_code != 1){
			var err_str = jsApplication.getErrorStr(obj, (obj==null)?data:'Неизвестная ошибка');
			n_dump(err_str);
			return;
		}
		// Ошибок не обнаружено идем дальше
		n_dump(obj.content);
	}
});
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Это функция callback событий, которое возникает в формах и таблицах. Функция может влиять на ход дальнейшей обработки. Если она возвратит 0, то обработка должна быть прекрашена, в протвном случае продолжена.
Примерная функция javascript имеет следующий вид:

<script type='text/javascript'>
	function onEvent(e){
		var step = e.step || null;
		var event = e.event || null;
		var result = e.result || null;
		if ((e.event == 'form_submit_and_close' || e.event == 'form_submit_and_continue') && step == 'success' && result.res.error_code == 1){
			//console.log('#niceTable{{niceTableID}}');
			$('#niceTable{{niceTableID}}').niceTable('reload',{});
		}
		return 1;
	}
</script>

В функцию onEvent передается объект e. Таблица внизу приводит список его свойств:
	
	Свойство
	Описание

	1
	event
	Событие, которое возникло

	2
	step
	Шаг:
· pre – перед тем как начать
· success – выполнено успешно
· error – выполнено с ошибкой
· complete – завершено

	3
	formID
	ID формы

	4
	nicetableID
	ID таблицы

	5
	params
	Для формы это список всех значений элементов формы

	6
	event
	Тип события:
· form_submit_and_close – нажали на кнопку сохранить и закрыть
· form_submit_and_continue – нажали на кнопку сохранить и продолжить
· form_close – происходит закрытие формы
· nicetable_reload – происходит обновление таблицы
· getEntityParams – функция, которая должна вернуть дополнительные параметры, которые используются в запросах, виде объекта
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Для того чтобы посылать event существует функция из io.js jsApplication.callOnEvent. Результатом будет то, что вернула функция onEvent. Вызов этой функции представлен ниже:
var the_result=null;
the_result = jsApplication.callOnEvent({
	func: '{{onEvent}}', 
	params: {nicefilterID:'{{idForm}}', event:'getEntityParams'},
});

Либо просто:
jsApplication.sendEvent(e);

Параметры функции:
	
	Свойство
	Описание

	1
	func
	Функция, которая должна вызваться

	2
	params
	Параметры, которые передаются в функцию, это тот самый объект e, который содержит параметры event, step …
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a. Как создать форму через twig
b. Типы элементов формы и их параметры
c. Передача дополнительных параметров в форму через функцию params() и параметры при вызове actions
d. Какие методы есть у формы
e. Вызов и обработка капчи. 
f. Проверка прав
g. Примеры форм.



Работа с WindgetModel4

Данный раздел описывает методы работы с CMS и написание виджетов. Данный раздел актуален для виджетов, написанных на основе класса WidgetModel4. 

Работа с виджетами происходит из шаблонов Twig вызовами функций: widgetRender, widgetData, widgetRenderByType, widgetDataByType.

	
	Название функции
	Описание

	1
	widgetRender ($widget_name, $default)
	Вызывает рендер виджета,
· widget_name – api_name  виджета, объявленный в settings.xml
· default – значение по умолчанию виджета, если значение не установлено

	2
	widgetData ($widget_name, $default)
	Получает значение данных виджета, без вызова рендера.
· widget_name – api_name  виджета, объявленный в settings.xml
· default – значение по умолчанию виджета, если значение не установлено

	3
	widgetRenderByType ($widget_type, $widget_params, $default)
	Вызывает рендер виджета, используя тип и параметры виджета:
· widget_type – тип виджета: label, menu …;
· widget_params – параметры виджета;
· default – значение по умолчанию, если значение не установлено;

	4
	widgetDataByType
	Получает значение данных виджета, без вызова рендера:
· widget_type – тип виджета: label, menu …;
· widget_params – параметры виджета;
· default – значение по умолчанию, если значение не установлено;



Типы виджетов:
· label – текстовое поле
· menu - меню

Параметры виджетов, переменная widget_params:
· widget_name
· foreignPkid
· widget_uq, обычно берется из settings.xml, но если виджет там не объявлен, то можно установить widget_uq здесь.

Если widget_name объявлен в settings.xml и он не совпадает с widget_type, который вы указали в функции, то будет выдана ошибка о не соотвествии типов. Функции widgetRenderByType и widgetDataByType, обычно используются, если виджеты не были объявлены в settings.xml.


Функции виджета:
· doRender
· doSettings
· doData
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a) Что это такое зачем они нужны
b) run_pre, run_post
c) порядок поиска контроллера
d) lineMenu
e) breadcrumbs
f) layout
g) self::render, IOCore::renderAction
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a. основы twig. Циклы, условия, вызов функций, фильтров. Вывод переменных через ioPage и функцию render 
b. как писать свои функции и фильтры
c. функции и фильтры twig
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Анализирует входной текст QR кода и выдает его характеристики.

· type – тип QR кода. Может быть 'product', либо 'container';
· tid – ИНТ товара;
· company_number – номер компании, создавшей QR код;
· qr_number – серийный номер QR кода;
· type_id – ИД типа, типы объявлены в api.php и могут быть QR_TYPE_PRODUCT - 1, QR_TYPE_CONTAINER – 2;
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a. Архитектура прав доступа.
b. Как осуществить проверку прав.
c. Как авторизоваться и выйти из системы.
d. IOSession
e. $ioSession->user
f. Как узнать в каких компаниях находится пользователь
g. Об аккаунтах
h. Массив iodbtables
i. Функции io_class_load, io_entity_load, 
j. Пурифер – purifier
k. Массив ioEnum
l. Корректная работа с датами
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a. Список команд классов и моделей, доступных для вызова из других проектов
b. проект common
c. интеграция авторизации
d. массив ioProjects
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Кластер – комплекс серверов, обслуживающий один проект. Кластер является целостной структурой, состоящий из нод, балансировшиков, серверов, баз данных…
Нода – комлпекс серверов, находящийся в одном датацентре, для уменьшения задержки обработки запросов. Нода в кластере синхронизируются между собой файлами и данными. Считается что нода всегда доступна, и данные с файлами нод в класетере одинаковые.
Шардинг – горизонтальное разбиение данных по нескольким серверам по определенному критерию;
Репликация – процесс копирования базы данных и постоянного копирования и применения изменений на этих базах данных. В итоге получается одинаковая база на разных серверах;
Программа прокси базы данных – программа, которая определяет, на какой шард и на какую реплику обратиться для получения данных;
Кэширование – сохранение результатов обработки информации по часто совершаемым запросам;
Балансировшик – программа, которая распределяет нагрузку от запросов пользователей между серверами приложениями, а также защишает сервера от ддос и прочих атак, на уровне сети.
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1. Весь проект должен быть размещен минимум в трех географически удаленных датацентрах;
2. Выбор датацентра, к которому будет адресован запрос, будет выбран на основе ДНС round robin балансировки;
3. В датацентрах размещены сервера, которые содержат следующие программы:
a. балансировшик, выделенные в отдельный сервер, задача которого переадресовывать запросы, согласно нагрузки серверов веб приложения;
b. приложение, которое содержит всю логику проекта и обрабатывает запросы пользователей, выделенный в отдельный сервер. На сервере, где расположено приложение, находятся файлы, которые загружаются пользователями, которые не предназначены для хранения в облачном хранилище (например, шаблон сайта). Синхронизация файлов происходит с помощью программы lsyncd;
c. кэш часто запрашиваемых данных от пользователей, расположенный на отдельном сервере;
d. кэш поиска необходимой информации по различным критериям, расположенный там же, где и кэш часто запрашиваемых данных (скорее всего это будет одна и таже программа);
e. программа прокси к базе данных для перенаправления запросов к репликам, расположенный на том же сервере, что и приложение;
f. конфиг сервер для mongoDb, содержащий мета данный реплик, расположен на отдельном сервере;
g. база реплика для каждого шарда, на каждый шард минимум три реплики. Каждая реплика на отдельном сервере;
4. Каждый веб сервер (приложение) должен обладать программой приложением, кэшом данных и программой прокси к БД;
5. На серверах располагается только один проект, никаких других проектов на этих серверах не должно;
6. Минимальное количество серверов для проекта - 3 сервера, размещенных в разных датацентрах, на которых размещены все необходимые программы;
7. Для увеличения производительности при росте данных можно наращивать серверные мощности:
a. Увеличивать количество шардов и реплик, работающие в режиме чтения;
b. Увеличивать количество серверов, отвечающих за кэширование
c. Увеличивать количество серверов на котором размещено приложение для обработки запросов пользователя;
8. Обработка запроса от пользователя не должно превыщать 10 мс. В идеале 1мс.
9. Все сервера в проекте должны быть объединены в единую одну виртуальную сеть. Обмен трафиком должен происходить только через нее. Сеть должна быть децентрализованной. Пароли от сети должны меняться раз в день.
10. Арихитектура должна обеспечить доступ к домену test.<название сайта> для апробации новой версии приложения при его деплоя;

Файлы проекта можно кэшировать с помощью программы lsyncd – 
http://habrahabr.ru/post/132098/
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1. Пользователь открывает браузер и вводит адрес проекта;
2. С помощью ДНС балансировшика должен выбираться ближайший незагруженный к пользователю сервер и отсылается запрос на него;
3. Программа принимает запрос и начинает его обработку;
4. Программа запрашивает кэш на наличие этих данных;
5. Если данных нет. программа обращается к прокси БД для обработки запроса;
6. Программа прокси на основе данных шардинга, которые находятся на конфигурационных серверах находит реплику, на которой размещены необходимые данные. Реплика должна находиться в этом же датацентре, что и сам прокси;
7. После нахождение реплики прокси отправляет запрос к БД;
8. По возращении результата от прокси программе приложению, приложение должно сохранить в кэш вернувшийся ответ на запрос, чтобы в дальнейшем не обращаться лишний раз к базе;
9. Если запрос был на изменение данных, то приложение, должно сообщить всем кэширующим серверам, что данные изменены, пусть перехешируют;
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· Минимальное количество серверов на кластер – 3;
· Минимальное количество серверов в шарде базы данных – 3;
· Максимальное количество голосующих серверов в шарде при выборе первичного сервера – 7;
· Не должно быть четного количества серверов;
· Не должно быть сервера, где размещены несколько реплик одной и той же БД;
· Среднее количество серверов на один проект – 21 (в одном датацентре содержится один балансер, два приложения, 1 конфиг, два шарда, кэш);
· Рабочая нагрузка к базе данных – 3 000 запросов/сек;
· Среднее количество запросов к базе данных для генерации одной страницы: 8 запросов;
· Среднее количество активных пользователей – 300 пользователей / сек;
· Максимальное время обработки одного http запроса– 10мс;
· Коэффициент запаса прочности системы – 5;
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Обновление происходят по кластерно. Каждый сервер содержит следующие папки:
· /srv/<название проекта>/www – симлинк на рабочую версия;
· /srv/<название проекта>/test – папка симлинк на новую версию;
· /srv/<название проекта>/v/<версия> - папка с версиями проекта, синхронизируется;
· /srv/<название проекта>/tmp – временная папка;
· /srv/<название проекта>/upload – сюда заливаются файлы из форм;
· /srv/<название проекта>/data – папка с данными проекта, синхронизируется;

Процесс обновления происходит следующим образом:
1. Загрузить новую версию проекта в папку /srv/<название проекта>/v/<версия> на один из серверов;
2. Подождать пока произойдет синхронизация файлов по серверам;
3. Установить тестовый симлинк на новую версию. Теперь все сайты test.<домен сайта> будут ссылаться на сайт с новой версией, а www.<домен сайта> на текущую версию проекта;
4. Запустить скрипты, изменяющие данные базы данных;
5. Проверить работоспособность каждого сайта test.<домен сайта> и качество отображения;
6. Если все в порядке и ошибок не обнаружено, то изменить симлинк папки www на новую версию.
7. Теперь на каждом сайте кластера новая версия проекта.
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Обновление происходят по кластерно. Каждый сервер содержит следующие папки:
· /srv/<название проекта>/www – симлинк на рабочую версия;
· /srv/<название проекта>/test – папка симлинк на новую версию;
· /srv/<название проекта>/v/<версия> - папка с версиями проекта, синхронизируется между нодами;
· /srv/<название проекта>/tmp – временная папка;
· /srv/<название проекта>/upload – сюда заливаются файлы из форм;
· /srv/<название проекта>/data – папка с данными проекта, синхронизируется между нодами;

Процесс обновления происходит следующим образом:
8. Загрузить новую версию проекта в папку /srv/<название проекта>/v/<версия> на один из серверов;
9. Подождать пока произойдет синхронизация файлов по серверам;
10. Установить тестовый симлинк на новую версию. Теперь все сайты test.<домен сайта> будут ссылаться на сайт с новой версией, а www.<домен сайта> на текущую версию проекта;
11. Запустить скрипты, изменяющие данные базы данных;
12. Проверить работоспособность каждого сайта test.<домен сайта> и качество отображения;
13. Если все в порядке и ошибок не обнаружено, то изменить симлинк папки www на новую версию.
14. Теперь на каждом сайте кластера новая версия проекта.
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b. Написать как пользоваться Mercurial
a. Как делать комиты
b. Как обновлять. Параметр –c и его особенности. Процесс обновления
c. Как делать merge
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1) Старайтесь больше обращаться к переменным, а не экземплярам класса

Хорошо:
$a=$cl->a;
$d[$a][‘in’]=1;
$d[$a][‘out’]=1;

Плохо:
$d[$cl->a][‘in’]=1;
$d[$cl->a][‘out’]=1;


2) В
3) Писать действия через jquery к элементам в тех же html шаблонах, где они объявляются;
4) При написании css писать полный пути к классу. Например, класс .menu;
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